
Viaduct
An Extensible, Optimizing Compiler for Secure Distributed Programs

(Technical Report)

Coşku Acay∗
Cornell University
Ithaca, NY, USA

cacay@cs.cornell.edu

Rolph Recto∗
Cornell University
Ithaca, NY, USA
rr729@cornell.edu

Joshua Gancher
Cornell University
Ithaca, NY, USA

jrg358@cornell.edu

Andrew C. Myers
Cornell University
Ithaca, NY, USA

andru@cs.cornell.edu

Elaine Shi
Cornell University
Ithaca, NY, USA

runting@gmail.com

Abstract
Modern distributed systems involve interactions between
principals with limited trust, so cryptographic mechanisms
are needed to protect confidentiality and integrity. At the
same time, most developers lack the training to securely em-
ploy cryptography.We present Viaduct, a compiler that trans-
forms high-level programs into secure, efficient distributed
realizations. Viaduct’s source language allows developers to
declaratively specify security policies by annotating their
programs with information flow labels. The compiler uses
these labels to synthesize distributed programs that use cryp-
tography efficiently while still defending the source-level
security policy. The Viaduct approach is general, and can be
easily extended with new security mechanisms.

Our implementation of the Viaduct compiler comes with
an extensible runtime system that includes plug-in support
for multiparty computation, commitments, and zero-know-
ledge proofs. We have evaluated the system on a set of bench-
marks, and the results indicate that our approach is feasible
and can use cryptography in efficient, nontrivial ways.

CCS Concepts: • Security and privacy → Information
flow control; Cryptography; Domain-specific security and
privacy architectures.

1 Introduction
Modern distributed applications such as federated systems
and decentralized blockchains typically involve parties from
multiple administrative domains each with its own security
policy. Companies might be required by law (such as the
European Union’s GDPR [21]) to protect user privacy when
they process user data or share it with other companies. The
lack of full trust among parties makes it difficult to develop
such systems, especially when the security requirements
necessitate the use of cryptographic mechanisms. Recent
efforts from the cryptography community have pushed these

∗Equal contribution.

runtime

Label
Inference

Protocol
Selection

Runtime Protocol
Back End

Cost
Estimator

Protocol
Factory

Extension
Points

Source
Program

Distributed
Program

Protocol
Composer

Figure 1. Architecture of Viaduct.

mechanisms from theory to practical deployment [5], but
a gap remains: they still require too much expertise to use
successfully [15, 17, 22].
We introduce Viaduct, a system that makes it easier for

non-expert programmers to develop secure distributed pro-
grams that employ cryptography. It puts a variety of sophisti-
cated cryptographic mechanisms in the hands of developers,
including secure multiparty computation (MPC) protocols,
zero-knowledge proofs (ZKP), and commitment schemes.
Viaduct’s security-typed language allows developers to anno-
tate programs with information-flow labels to specify fine-
grained security policies regarding the confidentiality and
integrity of data and computation. An inference algorithm
allows these annotations to be lightweight, and enables Via-
duct to reject inherently insecure programs. Viaduct then
enforces these policies by compiling high-level source code
to secure distributed programs, automatically choosing effi-
cient use of cryptography without sacrificing security. The
compiler supports a range of cryptographic protocols whose

1

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi

security guarantees are characterized using information-flow
labels. New protocols can be added to Viaduct by specifying
their security properties and by implementing well-defined
interfaces.

Although prior efforts have attempted to bridge this gap,
most existing work focuses on compiling programs to a
fixed set of cryptographic mechanisms. For example, some
focus on compiling programs to MPC (e.g., Wysteria [41],
ObliVM [34], SCALE-MAMBA [3]); others focus on ZKP (e.g.,
Pinocchio [38], Buffet [47], xjSNARK [32]). To our knowl-
edge, by providing a unified abstraction to both specify secu-
rity policies of programs and to specify security guarantees
of cryptographic mechanisms, Viaduct is the first system to
compile secure, distributed programs with an extensible suite
of cryptography.

We make the following contributions:
• An algorithm to infer minimum consistent security
requirements of data storage and computation for pro-
grams written in a security-typed language. (§3)
• A technique to compile secure distributed programs,
deploying an extensible set of cryptographic protocols
while minimizing a customizable notion of cost. (§4)
• An extensible runtime system for running compiled
programs. Cryptographic mechanisms are added as
plug-ins to the runtime. (§5, §6)
• An evaluation that shows that the Viaduct compiler
can synthesize a wide variety of secure and efficient
distributed programs, that the compilation technique is
scalable, and that the annotation burden of the source
language is minimal. (§7)
• An open-source implementation of the Viaduct com-
piler and runtime system.1

2 Overview of Viaduct
Figure 1 gives a high-level overview of Viaduct. Its compiler
takes a high-level source program partially annotated with
information-flow labels. The compiler infers labels consis-
tent with programmer-supplied annotations to determine
security requirements for all program components. Then for
each component the compiler selects a protocol that matches
these requirements, guiding the selection with a cost model.
The output is a secure and efficient distributed program,
which hosts execute using the Viaduct runtime system. The
Viaduct architecture has a small set of well-defined extension
points, allowing developers to add support for new protocols
with relative ease.

We give two examples to motivate and describe the Via-
duct compilation process.

Historical Millionaires’ Problem. Our first example is a
slightly modified version of the “millionaires’ problem” [48].
As in the classic formulation, two individuals, Alice and Bob,
1Available at https://github.com/apl-cornell/viaduct.

1 host alice: {A ∧ B←}

2 host bob : {B ∧ A←}

3

4 val a1, a2, a3 = input int alice

5 val b1, b2, b3 = input int bob

6 val a = min(a1, a2, a3)

7 val b = min(b1, b2, b3)

8 val b_richer = declassify a < b to {A ⊓ B}

9 output b_richer to alice , bob

Figure 2. Implementation of the historical millionaires’ prob-
lem in Viaduct. Viaduct uses MPC for the comparison a < b,
but computes the minima locally.

1 host alice: {A}

2 host bob : {B}

3

4 val n: {B ∧ A←} =

5 endorse (input int bob) from {B}

6 var tries: {A ⊓ B} = 5

7 var win: {A ⊓ B} = false

8 while (0 < tries ∧ !win) {

9 val guess =

10 declassify (input int alice) to {A ⊓ B→}

11 val tguess: {A ⊓ B} =

12 endorse guess from {A ⊓ B→}

13 win = declassify (n == tguess) to {A ⊓ B}

14 tries -= 1

15 }

16 output win to alice , bob

Figure 3. Guessing game, where Alice attempts to guess
Bob’s secret number. Viaduct uses zero-knowledge proofs
so Alice learns nothing more than whether her guesses are
correct. Most labels in this code can be inferred automatically.

want to determine who has more money without revealing
howmuch money they have to the other person. Rather than
comparing their current wealth, in our “historical” variant
Alice and Bob want to see who was richer at their poorest.
Figure 2 shows an implementation of the historical million-
aires’ problem in Viaduct. The program compares Alice’s
lowest wealth with Bob’s, and outputs the answer (b_richer)
to both Alice and Bob.
Viaduct programs must specify the hosts that participate

in the program, along with the authority that each host has,
as shown in lines 1–2. All security policies in Viaduct are
represented using security labels (in blue), which are defined
formally in §2.1. Security labels capture both confidentiality
and integrity. For example, host alice is given label A ∧ B←.
Here, B← is the integrity component of B (similarly, B→ is

2

https://github.com/apl-cornell/viaduct

Viaduct

the confidentiality component of B). This label means that
Alice fully trusts host alice (with both confidentiality and
integrity), while Bob trusts host alice to execute the program
correctly, but does not trust the host with his secret data.
All variables and expressions in Viaduct carry a security

label, which is derived from the possible flows of information
in the program. The variables in lines 4–7 carry the same
label as their respective hosts, since they only involve data
local to that host. However, the comparison a < b involves
both hosts’ private data, so has the higher security labelA∧B.
This label corresponds to data that is secret to and trusted by
both principals. Since A ∧ B corresponds to secret data, we
require an explicit declassification to the label A ⊓ B, which
describes data that both hosts can see and trust.
During protocol selection (§4), Viaduct chooses crypto-

graphic protocols to securely and efficiently execute our
example. The central idea that allows Viaduct to select proto-
cols automatically is that the security guarantees of protocols
can also be captured by labels. Neither Alice nor Bob alone
has enough authority to be responsible for the comparison,
so Viaduct generates the following distributed implementa-
tion: Alice and Bob compute their respective minima locally
but perform the comparison a < b in semi-honest MPC. A
semi-honest MPC protocol works here because the authority
labels assigned to the hosts indicate that Alice and Bob trust
each other’s hosts for integrity. Without that assumption,
Viaduct is instead forced to select another protocol such as
maliciously secure MPC.
There are typically multiple ways to assign protocols to

a given program expression. For example, the computation
of Alice’s minimum on line 6 could be securely performed
in MPC, but since the computation requires the authority of
Alice alone, it is cheaper yet still secure to do the computation
locally on Alice’s machine. Using its cost estimator, Viaduct
compiles the optimal program described above.
After protocol selection, Viaduct outputs a distributed

program which captures the required cryptography to exe-
cute the source program. Hosts can execute this distributed
program using Viaduct’s runtime system.

Guessing Game. Figure 3 presents a contrasting example.
Here, Alice and Bob have security labelsA and B respectively,
modeling a malicious corruption scenario. Since they do
not trust each other to execute the program correctly, semi-
honest MPC is not applicable. Bob inputs a number n, and
Alice has five attempts to guess the number. Since Bob’s
input initially has label B, it must first be endorsed to the
label B∧A←, raising integrity so that Bob cannot unilaterally
modify the value. This endorsement requires a cryptographic
mechanism to protect the integrity and secrecy of variable n

throughout program execution.
Viaduct synthesizes a program in which Bob commits to n

so that its value remains secret to Alice but Bob cannot later
lie about the committed value. The statement n == tguess is

computed by having Bob send a zero-knowledge proof (ZKP)
to Alice, so that Alice can trust the outcome but learns no
additional information. All other variables are replicated in
plaintext across the two hosts.
These examples show that Viaduct is general, as it treats

protocols such as MPC and ZKP uniformly.

2.1 Specifying Security Policies
In Viaduct, security policies capture a notion of authority.
Policies are represented by principals, formulas composed of
conjunctions and disjunctions over a set of base principals
{A,B,C, . . .} and two special principals 0 and 1. Principal 0
represents maximal authority and corresponds to the con-
junction of all base principals; principal 1 represents minimal
authority and corresponds to the disjunction of all base prin-
cipals. We distinguish authority over confidentiality and over
integrity. The security requirements of information are thus
characterized by labels consisting of pairs ⟨pc,pi⟩ of two prin-
cipals pc and pi, for confidentiality and integrity respectively.
A conjunction of principals p1 ∧ p2 represents combined

authority. For confidentiality, this means the principal is
allowed to read data that p1 may read and also data that
p2 may read. For integrity, the conjunction may influence
data that p1 may influence, and also data p2 may influence. A
disjunction p1 ∨p2 corresponds to common authority, which
may read or influence exactly the data that either p1 and p2
may individually.
Principals carry a natural partial order based on their

authority. We write p1 ⇒ p2 to mean p1 “acts for”, or is at
least as trusted as, p2. This relation coincides with logical
implication: for example, p1 ∧ p2 ⇒ p1 and p1 ⇒ p1 ∨ p2.

It is convenient to have syntax that works over both com-
ponents of labels simultaneously. So, we extend 0, 1, ∧, ∨,
and⇒ pointwise, and write one principal to mean that the
two components are the same. For example, the annotation
{A} denotes the label ⟨A,A⟩. To talk about confidentiality
and integrity separately, we use projections, writing ℓ→ for
the confidentiality projection of ℓ and ℓ← for its integrity.
Thus, {B ∧ A←} expands to ⟨B,B ∧A⟩, meaning Bob’s sole
confidentiality and the combined integrity of Alice and Bob.
These projections are defined formally as follows:

⟨pc,pi⟩
→ ≜ ⟨pc, 1⟩ ⟨pc,pi⟩

← ≜ ⟨1,pi⟩.

The reflection operator [49] swaps the two components:

JJJJ

 (⟨pc,pi⟩) ≜ ⟨pi,pc⟩

Viaduct programs assign labels to hosts to indicate the
amount of trust placed in them, but there are also labels on
data. The important insight, borrowed from FLAM [4], is that
the same set of labels can be used to talk about both authority
and information flow. When placed on data, a label takes on
an information flow interpretation, specifying the minimum
authority required to read and influence that data. As in
FLAM, standard operations from information flow literature

3

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi

can be reformulated in terms of authority:

ℓ1 ⊑ ℓ2 ⇐⇒ ℓ→2 ⇒ ℓ
→
1 and ℓ←1 ⇒ ℓ

←
2 (flows to)

ℓ1 ⊔ ℓ2 ≜ (ℓ1 ∧ ℓ2)
→ ∧ (ℓ1 ∨ ℓ2)

← (join)
ℓ1 ⊓ ℓ2 ≜ (ℓ1 ∨ ℓ2)

→ ∧ (ℓ1 ∧ ℓ2)
← (meet)

The flows-to relation ℓ1 ⊑ ℓ2 orders information flow
policies: it means label ℓ1 is more permissive about the use
of information than ℓ2. The join ℓ1 ⊔ ℓ2 is more restrictive
than both ℓ1 and ℓ2, and the meet ℓ1 ⊓ ℓ2 is more permissive
than either ℓ1 or ℓ2. The most restrictive label—that of com-
pletely secret, untrusted data—is 0→ = ⟨0, 1⟩, and the least
restrictive (public, trusted data) is 0← = ⟨1, 0⟩.

2.2 Threat Model
Compiled programs run in a distributed setting inwhich each
host executes a single thread concurrently with other hosts.
Hosts communicate via message passing over secure, private,
asynchronous channels. There is no shared memory that
spans multiple hosts. We assume the attacker cannot observe
wall-clock timing. Additionally, we are not concerned with
availability, so the attacker can halt execution at any time.
In the setting of Viaduct, there is no single notion of an

attacker. For example, in the historical millionaires problem,
neither Alice nor Bob fully trust the other. To Alice, Bob is a
potential attacker; Alice expects her security requirements to
bemet as long as the behavior of Bob’s (partially trusted) host
is accurately described by the label assigned to it (B ∧A←).
Conversely, to Bob, Alice is a potential attacker. Hence, we
are concerned with security versus all possible attackers.
We model the power of an attacker using a label. The

attacker can read the data on a host if the confidentiality of
the attacker label is at least as trusted as that of the host, and
can change data and code on the host if the integrity of the
attacker label is at least as trusted as that of the host. We do
not consider unreasonable attack scenarios in which a host
has compromised integrity but still enforces confidentiality.2

For example, in the historical millionaires’ problem, there
are five interesting corruption scenarios: no corrupted hosts;
alice has corrupted confidentiality; bob has corrupted confi-
dentiality; both have corrupted confidentiality; or both alice

and bob are fully corrupted. The full corruption of a single
host is not possible because the hosts trust each other, so if
the integrity of one is corrupted then the other’s integrity
must be corrupted also.

2.3 Label Inference
Viaduct selects a protocol for every piece of data and compu-
tation in the program based on their authority requirements,
represented as labels. Intuitively, program components must
be executed by protocols with enough authority to defend

2The semi-honest and malicious threat models common in cryptography
correspond to corrupting only hosts’ confidentiality and corrupting both
hosts’ confidentiality and integrity respectively.

the confidentiality of host inputs and the integrity of host
outputs. These authority requirements are captured formally
by a type system (§3.1), and Viaduct uses a novel inference
algorithm (§3.2) to compute for all program components the
minimum-authority labels that still respect the information-
flow constraints on the program.

The only required label annotations on Viaduct programs
are the authority labels on host declarations and labels on
declassify/endorse expressions—all labels on variables can
be elided, making annotation burden low. As we show in
our evaluation, in practice these required annotations are
enough to capture programmer intent: minimally annotated
programs compile to the same distributed programs as their
fully annotated versions.

2.4 Protocol Selection
After label inference, Viaduct performs protocol selection,
which assigns a protocol to compute and store each subex-
pression and variable. Protocols encompass storage and com-
putation performed “in the clear” as well as cryptographic
mechanisms such as commitments,MPC and zero-knowledge
proofs.

Each protocol P carries an associated authority label L(P),
which approximates the security guarantees the protocol
provides. Given a program component with minimum au-
thority requirement ℓ, protocol selection only assigns P to
execute that component if L(P) ⇒ ℓ—that is, if P meets the
authority requirement for the program component.
Intuitively, given a program s and protocol P , we may

imagine an ideal functionality Ps (in the style of UC [9])
which executes the program fragments of s that are assigned
to P . The fragments of s that are assigned to P may depend
on the computational abilities of P . For example, if P is a
commitment protocol, then Ps is only able to store values
but not perform any computations. If P is an MPC protocol,
then Ps can execute computations that can be translated into
circuits—the standard interface for MPC implementations.
Ps guarantees that the storage and computation it per-

forms are protected at label L(P). In particular, the adversary
cannot observe storage or computation performed by Ps un-
less its confidentiality is at least L(P); dually, the adversary
cannot influence storage or computation performed by Ps

unless its integrity is at least L(P).
Examples of protocols and their corresponding authority

labels are given in Figure 4. Following the above intuition
for the security of functionalities Ps , the authority label of
protocols are determined to be the least authority required
of the adversary to corrupt the protocol (in confidentiality
or integrity). We explain the example protocols below:

Local(h). No cryptography is performed, and data is stored
and computations performed on host h in the clear. It pro-
vides exactly the authority of h.

4

Viaduct

Protocol Authority label

Local(h) L(h)
Replicated(H)

d
h∈H L(h)

Commitment(hp,hv) L(hp) ∧ L(hv)
←

ZKP(hp,hv) L(hp) ∧ L(hv)
←

MAL-MPC(H)
∧

h∈H L(h)

SH-MPC(H) let I =
∨

h∈H L(h)
←

(JJJJ

 (I) ∨
∧

h∈H L(h)
→) ∧ I

Figure 4. Example protocols and security labels that repre-
sent their authority.

Replicated(H). Data and computations are replicated on
all hosts in set H , and replicated data is checked for equal-
ity when necessary. This protocol provides confidentiality∨

h∈H L(h)
→ since all hosts hold the plaintext value. It pro-

vides integrity
∧

h∈H L(h)
← since all hosts must corrupt their

local values for the value to be globally corrupted. Together,
these labels form the label

d
h∈H L(h).

Commitment(hp,hv). Data is stored on hp and commit-
ments are placed on hv. Commitments are computationally
inexpensive but usually no computations can be performed
with them. Commitments increase integrity without sacrific-
ing confidentiality. Its confidentiality is L(hp)→ since onlyhp
holds the plaintext value, while hv only holds a commitment.
Its integrity is (L(hp) ∧ L(hv))← for the same reason as for
replication.

ZKP(hp,hv). A zero-knowledge proof protocol where hp
is the prover and hv is the verifier. The prover computes over
its private data and sends the result to the verifier, along
with a proof that attests the value computed is correct. The
proof reveals nothing about the private data except what
can be gleaned from the result itself. Zero-knowledge proofs
provide the same authority as commitments, for essentially
the same reason: the prover holds all secret information
and performs all computation, while the verifier only holds
information which allows it to believe in the correctness of
the result, but nothing more.

MAL-MPC(H). A corrupt-majority, maliciously secure
multiparty computation protocol [8, 10, 24] performed by
hosts H . The protocol allows hosts to jointly perform a com-
putation over their private inputs, keeping these inputs se-
cret to the other hosts and revealing only the result. The
label

∧
h∈H L(h) reflects that the confidentiality (resp., in-

tegrity) of data computed in MPC is compromised only if all
participating hosts have compromised confidentiality (resp.
integrity).

SH-MPC(H). A corrupt-majority, semi-honest secure mul-
tiparty computation protocol performed by hosts H . While
the combined authority label is complex, its confidential-
ity and integrity projections are easy to understand. The
integrity is equal to

∨
h∈H L(h)

←, since the integrity of the

MPC computation may be compromised if any host behaves
maliciously. The confidentiality is equal to(∨

h∈H

JJJJ

 (L(h)←)

)
∨

(∧
h∈H

L(h)→

)
.

The first disjunct captures the fact that confidentiality
guarantees are discarded if the integrity of any host is com-
promised. The second disjunct states that, if all hosts follow
the protocol correctly, the adversary can only learn the state
of intermediate MPC computations if all hosts have cor-
rupted confidentiality. Overall, this means that in order to
compromise confidentiality guarantees of semi-honest MPC,
either the integrity of any host or the confidentiality of all
hosts must be compromised.
In particular, for the historical millionaires’ example, the

label of SH-MPC(alice, bob) is A ∧ B. This is because hosts
alice and bob are both assumed to have the high integrity
of (A ∧ B)←. If alice and bob only have their own integrity,
however, then the label is computed to beA∨B. The protocol
only has enough authority to perform computations over
data public to both hosts, and neither host trusts the result.
Indeed, semi-honest MPC offers little to no benefit if any
host has lower integrity than any other.

2.5 Runtime
Viaduct provides a modular runtime system for executing
compiled distributed programs, implemented as an inter-
preter. All hosts run the interpreter with the same compiled
program, which then executes each host’s portion of the
program. During execution, the interpreter calls out to back
ends implementing the cryptographic mechanisms used in
the program. Back ends translate computations in the source
language into their cryptographic realizations. For instance,
the back ends for MPC and ZKP in our implementation build
a circuit representation of the program as it executes.

Protocol back ends can send data to and receive data from
each other, supporting the composition of protocols. Source-
level declassification and endorsement induce this commu-
nication. For example, in Figure 2 on line 8, the computation
a < b is declassified from label A∧ B to A⊓ B. This declassi-
fication causes the MPC protocol between Alice and Bob to
execute its stored circuit for this comparison, and to output
the result in cleartext.
Figure 5 shows the execution of the program compiled

by Viaduct for the historical millionaires’ problem. The pro-
gram runs as follows. (1) First, the cleartext back ends on
Alice and Bob’s machines receive input locally and compute
their respective minima. The back ends send the minima
as secret inputs to their respective MPC back ends, which
create input gates for these inputs. (2) Next, the MPC back
ends on Alice and Bob’s machines each create an operation
gate that compares Alice and Bob’s secret inputs. The back
ends jointly execute the circuit with the comparison result

5

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi

cleartext

val a1, a2, a3 = input int
val am = min(a1, a2, a3)
send am to (MPC(a,b),a)

val res = recv (MPC(a,b),a)
output res

MPC

val t_am = recv (Local(a),a)
val am = InputGate(t_am)
val bm = DummyInputGate()
val lt = LTGate(am, bm)
val v = ExecuteCircuit(lt)
send v to (Replicated(a,b),a)

Alice (a)
val b1, b2, b3 = input int
val bm = min(b1, b2, b3)
send bm to (MPC(a,b),b)

val res = recv (MPC(a,b),b)
output res

val am = DummyInputGate()
val t_bm = recv (Local(b),b)
val bm = InputGate(t_bm)
val lt = LTGate(am, bm)
val v = ExecuteCircuit(lt)
send v to (Replicated(a,b),b)

Bob (b) cleartext MPC

1

2 2

1

33

Figure 5. Execution of the compiled distributed program for the historical millionaires’ problem using a cleartext back end
and an MPC back end. Sends and receives are over protocol–host pairs (P,h). These messages are processed by the back end
for protocol P at host h.

Temporaries t ∈ T
Assignables x ∈ X
Hosts h ∈ H
Labels ℓ ∈ L

Base Types β ::= unit | bool | int
Data Types D ::= Cellβ | Arrayβ
Values v ::= () | true | false | i ∈ Z
Unary Operators op1 ::= not | − | . . .
Binary Operators op2 ::= ∧ | ∨ | + | × | = | . . .
Methods m ::= get | set | . . .

Atomic Expr. a ::= v | t
Expressions e ::=

| a | opn(a1, . . . ,an) | x .m(a1, . . . ,an)
| declassify a to ℓ | endorse a from ℓ
| inputβ h | output a to h

Statements s ::=
| let t = e in s | new x = D(a1, . . . ,an) in s
| if a then s1 else s2 | b : loop s | break b
| s1; s2 | skip

Figure 6. Abstract syntax of Viaduct’s source language

as output, which they send to their respective cleartext back
ends. (3) Finally, the cleartext back ends on Alice and Bob’s
machines both receive from their MPC back ends and output
the result.

3 Source Language
The syntax for Viaduct’s source language, a simplified ver-
sion of the surface language, is given in Figure 6. The lan-
guage supports base types such as booleans and integers,
along with their usual operators. Surface-level assignables
(val and var declarations) and arrays are uniformly rep-
resented as data types, a restricted form of objects. Like
regular objects, they are created using constructors (new
declarations) and contain methods. For simplicity, we only
include three data types: immutable/mutable cells, which
model surface-level assignables, and arrays. Arrays are dy-
namically sized but statically allocated: the size of an array

can depend on values known only at run time, but array
references cannot be rebound to different names or stored
in arrays.
We distinguish between fully evaluated atomic expres-

sions a, and expressions e that evaluate to values and may
have side effects. Methods include get and set operations
for both mutable cells and arrays (for which they take an
index as an extra argument). Input/output expressions allow
programs to interact with hosts. The declassify expression
marks locations where private data is explicitly allowed to
flow to public data, while the endorse expression marks loca-
tions where untrusted data is explicitly allowed to influence
trusted data.

Statements consist of let-bindings, assignable declarations,
as well as the usual conditionals, loops, and sequential com-
position. Temporaries bind values while assignables bind
instances of data types. We require all intermediate compu-
tations to be let-bound by a temporary, enforcing a variant
of A-normal form [18]. We use the more general loop-until-
break statements instead of the more traditional while loops,
simplifying the conversion to A-normal form. A break state-
ment (break b) includes an identifier b that names the loop
it breaks out of. While loops are recovered easily:

while e do s ≜ b : loop (if e then s else break b).

3.1 Label Checking
Viaduct’s type system enforces secure information flow in a
standard way. The type system serves two purposes. First, it
helps programmers ensure there are no unintended informa-
tion flows: secrets are not leaked to and data is not corrupted
by unauthorized principals. Second, it specifies what labels
can be assigned to variables and expressions that the user
did not explicitly annotate.

Figure 7 presents label checking rules for expressions and
selected statements. Expressions are checked by the judg-
ment Γ; pc ⊢ e : ℓ, which means that e has label ℓ under
the context on the left. Here, Γ is a finite partial map from
temporaries, assignables, or loop names to labels:

Label Contexts Γ ::= · | Γ, t : ℓ | Γ, x : ℓ | Γ, b : ℓ

The program counter label pc is a standard way to prevent
implicit flows of information via control flow [44]. The rules

6

Viaduct

Γ ⊢ a : ℓ Γ; pc ⊢ e : ℓ
Γ ⊢ v : ℓ

Γ(t) = ℓt ℓt ⊑ ℓ

Γ ⊢ t : ℓ
Γ ⊢ ai : ℓ

Γ; pc ⊢ opn(a1, . . . ,an) : ℓ

Γ(x) = ℓx pc ⊑ ℓx
Γ ⊢ ai : ℓx ℓx ⊑ ℓ

Γ; pc ⊢ x .m(a1, . . . ,an) : ℓ

pc ⊑ ℓt Γ ⊢ a : ℓf ℓ←f = ℓ
←
t

ℓ→f ⊑ ℓ
→
t ⊔ JJJJ

 (ℓ←f) ℓt ⊑ ℓ

Γ; pc ⊢ declassify a to ℓt : ℓ

pc ⊑ ℓt Γ ⊢ a : ℓf ℓ→f = ℓ
→
t

ℓ←f ⊑ ℓ
←
t ⊔ JJJJ

 (ℓ→f) ℓt ⊑ ℓ

Γ; pc ⊢ endorse a from ℓf : ℓ

pc ⊑ L(h) L(h) ⊑ ℓ

Γ; pc ⊢ inputβ h : ℓ
pc ⊑ L(h) Γ ⊢ a : L(h)
Γ; pc ⊢ output a to h : ℓ

Γ; pc ⊢ s Γ; pc ⊢ e : ℓ pc ⊑ ℓ
(Γ, t : ℓ); pc ⊢ s

Γ; pc ⊢ let t = e in s

Γ ⊢ ai : ℓ pc ⊑ ℓ
(Γ, x : ℓ); pc ⊢ s

Γ; pc ⊢ new x = D(a1, . . . ,an) in s

pc ⊑ pc′ Γ ⊢ a : pc′
Γ; pc′ ⊢ s1 Γ; pc′ ⊢ s2
Γ; pc ⊢ if a then s1 else s2

pc ⊑ pc′ (Γ, b : pc′); pc′ ⊢ s
Γ; pc ⊢ b : loop s

Γ(b) = ℓb pc ⊑ ℓb
Γ; pc ⊢ break b

Γ; pc ⊢ s1 Γ; pc ⊢ s2
Γ; pc ⊢ s1; s2 Γ; pc ⊢ skip

Figure 7. Information flow checking rules for expressions and statements.

for method calls and input/output expressions differ from
those in standard security-typed languages in that they also
include premises with pc checks. These checks are required
because these expressions may induce communication be-
tween hosts, and hosts may learn secrets based on which
requests they receive. Prior work that targets the distributed
setting contains similar checks to control read channels [52].

Statement checking rules have the form Γ; pc ⊢ s ; they are
largely standard [44]. Because we assume attackers cannot
observe timing nor analyze traffic, the rule for conditional
statements does not require branches to have the same timing
behavior or effects (e.g., method calls, input/output).

Nonmalleable Information Flow Control. Information
flow type systems typically aim to enforce a compositional
security property such as noninterference [23]. Noninterfer-
ence is a strong property but it is too restrictive for practical
applications, which usually have a more nuanced policy for
secure information flow. Hence, like most languages support-
ing information flow control (e.g., [6, 37, 40]), Viaduct allows
programmers to signify the exceptions to a noninterference
policy through downgrading expressions.
Downgrading enables information flows that would vio-

late noninterference, so it can be dangerous. This is especially
true in the distributed setting, where storage and computa-
tion can be performed by hosts that one does not fully trust.
Downgrading confidentiality (declassification) allows secret
information to be treated as public information—a necessity
for many applications, but doing so might allow a corrupted
host to control when information is released or what infor-
mation is released. Downgrading integrity (endorsement)

allows untrusted information to be treated as trusted infor-
mation, but might enable a corrupted host to trick an honest
one into accepting mauled secrets.
The property of nonmalleable information flow control

(NMIFC) [11] prevents both of these abuses of downgrad-
ing by combining two properties: robust declassification [51]
and transparent endorsement [11]. Robust declassification
requires that principals to which data is declassified could
not have influenced either the decision to declassify or the
data itself. Meanwhile, transparent endorsement prevents
trusting mauled secrets by ensuring that information can
only be endorsed if the providing principal can read it.

The declassification and endorsement rules in Figure 7 en-
force NMIFC using the reflection operator JJJJ

 (§2.1). The rules
prevent the program from downgrading information with
compromised labels [49], in which confidentiality exceeds
integrity. These rules generate authority requirements that
prevent the Viaduct compiler from placing data and com-
putation on insufficiently trustworthy hosts. For example,
consider a program where a server releases secret informa-
tion to a client when the client guesses the correct password:

host server: {S}, client: {1}

val info: int{S}, pw: int{S}, guess: int{1}

if (declassify (pw == guess) to {1})

output (declassify info to {1}) to client

This program violates robust declassification, because the
decision to declassify info depends on (low-integrity) guess.
Without the restrictions on downgrading, Viaduct could com-
pile the program to store the guard pw == guess (with label
1) on the client. The client could simply claim to the server
that its guess is correct! For this program to type-check with

7

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi

ℓ1 ⊑ ℓ2 ; C(ℓ2) ⇒ C(ℓ1), I(ℓ1) ⇒ I(ℓ2)
ℓ→f ⊑ ℓ

→
t ⊔ JJJJ

 (ℓ←f); I(ℓf) ∧ C(ℓt) ⇒ C(ℓf)

ℓ←f ⊑ ℓ
←
t ⊔ JJJJ

 (ℓ→f); I(ℓf) ⇒ C(ℓf) ∨ I(ℓt)

Figure 8. Translating flows-to constraints over labels to acts-
for constraints over label components.

Constraint Update rule

L1 ⇒ L2 Li+11 := Li1 ∧ L
i
2

L1 ∧ p2 ⇒ L3 Li+11 := Li1 ∧ (p2→ Li3)
L1 ⇒ L2 ∨ L3 Li+11 := Li1 ∧ (L

i
2 ∨ L

i
3)

Figure 9. Update rules for solving acts-for constraints.

NMIFC, endorsement is needed to make the guard high-
integrity. A naive programmer might think to endorse the
entire guard, but this (nontransparent) endorsement could
still be compiled in a way that lets an untrusted host supply
its value. The correct solution is to explicitly endorse guess

before declassifying the comparison; since guess is not se-
cret, the endorsement is transparent. The resulting labels
correctly force Viaduct to put the comparison on the server.

3.2 Label Inference
Checking secure information flow is not enough; for protocol
selection, the compiler also needs the labels of all expressions.
We present an algorithm to infer these labels.

As in prior work on inferring information flow labels [37,
40], information flow checking reduces to a system of flows-
to (⊑) constraints over label constants and label variables.
Type inference collects these premises from Figure 7, and
generates fresh label variables for labels that appear in a
premise of a rule but not its conclusion (e.g., pc′ in the rule for
if statements). The inference algorithm finds a label-variable
assignment that satisfies all the constraints, if possible.

The algorithm computes the minimum-authority solution,
the choice of labels requiring the least amount of confiden-
tiality and integrity for each component. Minimum-authority
labels are desirable because higher authority is achieved only
through more trust or costly cryptography.

First, we translate the flows-to (⊑) constraints over labels,
which appear in rule premises, to acts-for (⇒) constraints
over the underlying label components as shown in Figure 8.
Here, C(ℓ) and I(ℓ) are functions that project the confidential-
ity and integrity components, respectively, of label ℓ. These
components are constants p when the label is known, and
variables L otherwise.

We then adapt the algorithm of Rehof and Mogensen [42]
for iteratively solving semilattice constraints. All principal
variables are initialized to 1 and unsatisfied constraints are
used to update variables repeatedly, until a fixed point is

reached, according to the rules in Figure 9. Constraints of
the form L1 ⇒ L2 or L1 ⇒ L2 ∨ L3 are used to perform the
corresponding update.
However, the rules in Figure 8 can also generate con-

straints of the form L1∧p2 ⇒ L3, arising from the typing rule
for robust declassification. The term p2 is always a constant
since Viaduct requires annotations on declassify operations,
so the value of L1 can be updated safely to p2→ L3, which
denotes the weakest authority p such that p ∧ p2 ⇒ L3.
When a lattice supports the → operation, it is a Heyting
algebra [43], allowing each update rule to lower the left-
hand-side variable to the minimum authority satisfying the
constraint. Any free distributive lattice, such as our lattice of
principals, is a Heyting algebra. We prove this fact, as well
as the fact that iterative analysis always terminates with the
minimum-authority solution, in the supplemental technical
report [2].

4 Protocol Selection
The protocol selection phase of Viaduct assigns a protocol to
each program component. Formally, a protocol assignment is
a function Π : (T∪X) → P from temporaries and assignables
to protocols. For a temporary t , Π(t) is the protocol that
executes the expression associated with t . Similarly, Π(x) is
the protocol that stores and responds to method calls on the
data type instance bound to x .

4.1 Validity of Protocol Assignments
Figure 10 outlines the conditions under which a protocol
assignment is valid. The judgement Π |= e : P means that
expression e can be executed by protocol P under assignment
Π. Similarly, the judgement Π |= s means that Π is a valid
assignment for statement s .
We now describe the rules for validity. The rule for tem-

poraries states that t can only be read by protocol P if Π(t),
the protocol storing t , can communicate with P , written
comm(Π(t), P). Not all pairs of protocols can communicate;
the customizable protocol composer, discussed further in §5.1,
defines the valid set of protocol compositions.
Other rules restrict where certain expressions can be ex-

ecuted. A method call on x must be executed by Π(x), the
protocol that stores x . Similarly, input/output expressions
must be executed locally on the relevant host.
The rules for temporary and assignable declarations en-

sure that the protocol selected for a temporary or assignable
has enough authority to securely store it. Formally, the label
L(Π(t)) of the protocol storing temporary t must act for (⇒)
the minimum required authority label L(t) computed for t
in §3.2 (and similarly for assignables). Labels L(Π(t)) are the
ones explained in Figure 4.

The rule for conditional statements ensures that all hosts
involved in the execution of a conditional statement (Fig-
ure 11) can learn which branch is taken. The first premise

8

Viaduct

Π |= e : P Π |= s

Π |= v : P
comm(Π(t), P)

Π |= t : P
Π |= ai : P

Π |= opn(a1, . . . ,an) : P
Π |= ai : Π(x)

Π |= x .m(a1, . . . ,an) : Π(x)
Π |= a : P

Π |= declassify a to ℓ : P

Π |= a : P
Π |= endorse a from ℓ : P Π |= inputβ h : Local(h)

Π |= a : Local(h)
Π |= output a to h : Local(h)

L(Π(t)) ⇒ L(t)
Π |= e : Π(t) Π |= s

Π |= let t = e in s

L(Π(x)) ⇒ L(x)
Π |= ai : Π(x) Π |= s

Π |= new x = D(a1, . . . ,an) in s

H = hosts(Π, s1) ∪ hosts(Π, s2)
∀h ∈ H . L(a)→ ⊑ L(h)→ ∀h ∈ H .Π |= a : Local(h)

Π |= s1 Π |= s2

Π |= if a then s1 else s2

Π |= s

Π |= b : loop s Π |= break b

Π |= s1 Π |= s2

Π |= s1; s2 Π |= skip

Figure 10. Rules for the validity of a protocol assignment.

Π(s) : 2P hosts(Π, s) : 2H

Π(let t = e in s) = Π(t) ∪ Π(s)

Π(new x = D(a1, . . . ,an) in s) = Π(x) ∪ Π(s)

Π(if a then s1 else s2) = Π(s1) ∪ Π(s2)

Π(b : loop s) = Π(s)

Π(break b) = Π(b : loop s)
Π(s1; s2) = Π(s1) ∪ Π(s2)

Π(skip) = ∅

hosts(Π, s) =
⋃

P ∈Π(s) hosts(P)

Figure 11. Protocols and hosts involved in the execution of
a statement. Here, hosts(P) is the set of hosts that protocol
P runs on, which is specified individually for each protocol.

cost(Π, let t = e in s) =

cexec(Π(t), e) +
∑

P ∈readers(Π,t ,s)
ccomm(Π(t), P) + cost(Π, s)

cost(Π, if a then s1 else s2) = max(cost(Π, s1), cost(Π, s2))
cost(Π,b : loop s) =Wloop × cost(Π, s)

cost(Π, s1; s2) = cost(Π, s1) + cost(Π, s2)
cost(Π, s) = 0 otherwise

Figure 12. Abstract cost model.

requires that involved hosts have enough confidentiality to
read the value of the conditional guard, while the second

premise ensures that the protocol computing the value of the
guard can forward it to all involved hosts. Both premises are
trivially satisfied when the guard is a constant expression.
Where necessary, the Viaduct compiler removes these

guard visibility constraints by multiplexing [35] conditional
statements into straight-line code. This allows, for exam-
ple, the compilation of conditionals with secret guards that
require execution in MPC.

4.2 Cost of Protocol Assignments
There can be many valid protocol assignments that securely
realize a source program. To select an optimal assignment,
Viaduct attributes a cost to each assignment using an ab-
stract cost model, shown in Figure 12. Developers can instan-
tiate the abstract model by modifying the customizable cost
estimator, which specifies cexec(P, s), the cost of executing
statement s in protocol P ; ccomm(P1, P2), the cost of commu-
nicating between P1 and P2; and the global constantWloop,
the number of times a loop is assumed to execute when its
iteration count is not statically known.
Our implementation configures cexec to assign a small

cost to executing “in the clear” and a large cost to the use of
cryptography, so the compiler avoids the use of cryptography
except when required for security. We also configure the
communication cost ccomm to minimize data movement. For
example, a frequently accessed public variable would be
replicated on two hosts so that each host has a local copy.
Placing the variable only on one of the hosts could reduce
storage cost but entails frequently sending its value to the
other host.

9

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi

4.3 Computing an Optimal Protocol Assignment
To compute an optimal protocol assignment given a program
s , the Viaduct compiler constructs a constrained optimization
problem over the following sets of variables:
• Assignment variables (αi). These represent the proto-
cols that execute let-bindings or declarations.
• Cost variables (βi). These represent the cost of execut-
ing let-bindings or declarations.
• Participating host variables (γi , j). These are true if host
j is participating in the execution of a statement i .

The compiler generates a set of constraints {ϕ1, . . . ,ϕn} over
these assignment, cost, and participating host variables, as
well as an expression βs capturing the cost of s as in Figure 12.
These constraints are drawn from a grammar consisting of
logical connectives, an equality predicate between assign-
ment variables and protocols, and an equality predicate be-
tween cost variables and cost expressions. The compiler uses
an off-the-shelf solver to find a solution for assignment vari-
ables αi and participating host variables γi , j such that all
constraints {ϕ1, . . . ,ϕn} are satisfied and βs is minimized.
Given the set of valid protocol assignments VA for s such
that VA = {Π | Π |= s}, this solution for the assignment
variables corresponds to a protocol assignment Πopt such
that

Πopt = arg min
Π∈VA

cost(Π, s).

Protocol Factory. To construct the optimization problem,
the compiler draws the set of available protocols from the
customizable protocol factory. Developers wishing to add
new protocols to Viaduct must extend the protocol factory
so that the compiler can generate assignments with these
protocols during protocol selection.

The protocol factory defines a function viable : T ∪ X→
2P that returns a set of viable protocols that can execute a
let-binding or declaration. This allows developers to specify
limitations regarding the use of particular protocols. For
example, commitment protocols may be unable to compute
over commitments. Other protocols may lack support for
certain operators.

Example. Consider the following source program to be
executed by hosts a and b:

let t1 = 1 + 1 in let t2 = t1 × 2 in skip

and the following data from the compiler’s label inference
phase and extension points:

1. viable(t1) = {P1, P3, P4}, viable(t2) = {P1, P2}
2. L(P1) ⇒ L(t1), L(P3) ⇒ L(t1), L(P4) ̸⇒ L(t1)
3. L(P1) ⇒ L(t2), L(P2) ⇒ L(t2)
4. hosts(P1) = {a}, hosts(P2) = {b}, hosts(P3) = {a,b}
5. cexec(P1, _) = 5, cexec(P2, _) = 5, cexec(P3, _) = 3
6. ccomm(P1, P1) = 0, ccomm(P3, P2) = 2
7. comm(P1, P1), ¬ comm(P3, P1)
8. comm(P3, P2), ¬ comm(P1, P2)

Then the compiler constructs the problem of minimizing
cost β1 + β2 while satisfying the following constraints:

(α1 = P1 ∨ α1 = P3) ∧ (α2 = P1 ∨ α2 = P2)

α1 = P1 → (γ1,a ∧ ¬γ1,b ∧ β1 = 5)
α1 = P3 → (γ1,a ∧ γ1,b ∧ β1 = 3)
α2 = P1 → (γ2,a ∧ ¬γ2,b ∧ α1 , P3 ∧ (α1 = P1 → β2 = 5 + 0))
α2 = P2 → (¬γ2,a ∧ γ2,b ∧ α1 , P1 ∧ (α1 = P3 → β2 = 3 + 2))

Note that α1, β1, γ1,a , and γ1,b are variables associated with
t1 while α2, β2 and γ2,a , γ2,b are variables associated with t2.
The first constraint bounds the possible values of assignment
variables α1 andα2 and is generated from the viable protocols
returned by the protocol factory. Viable protocols that do
not meet authority requirements are filtered out, so P4 is not
a possible value for α1. The rest of the constraints describe
the relationship between protocol assignments, participating
hosts, possible protocol compositions, and cost.3 From this
optimization problem the compiler then computes the opti-
mal assignment Πopt where Πopt(t1) = P3 and Πopt(t2) = P2.

5 Viaduct Runtime
Once it has computed a protocol assignment, the Viaduct
compiler outputs a program where every let-binding and as-
signable declaration is annotated with the protocol that will
execute it. This annotated program can be executed by the
Viaduct runtime, which consists of an extensible interpreter
that interacts with a set of protocol back ends, each of which
implement a set of protocols. The interface for protocol back
ends is straightforward: back ends must implement meth-
ods to execute let-bindings and assignable declarations, and
methods to communicate with other protocol back ends.

Each host runs a copy of the interpreter with the annotated
program as input. For each statement, the interpreter checks
whether the host participates in its execution, as defined by
hosts(Π, ·)—if not, the statement is treated like skip. If a host
participates in executing a let-binding or a declaration, the
interpreter calls the back end for the protocol assigned to the
statement. To execute a conditional, the host retrieves the
cleartext value of the guard from the protocol back end that
stores it, and executes the appropriate branch. The validity
rules for protocol assignments ensure the host is allowed to
see the cleartext value, and that it is able to retrieve it.

5.1 Protocol Composition
The protocol back end executing a let-binding must send
the computed value to back ends executing statements that
read the bound temporary. How one back end sends a value
to another depends on the protocols involved. For exam-
ple, a statement executed in Replicated(h1,h2) reading a

3Note that participating host variables are unused here, but in general they
encode the guard visibility constraint for conditionals.

10

Viaduct

Sending protocol (s) Receiving protocol (r) Communication Explanation

Local(h1) SH-MPC(h1,h2) (s,h1)
in
−→ (r ,h1) create input gate for MPC circuit

Local(hp) Commitment(hp,hv) (s,hp)
cc
−→ (r ,hp) create commitment

Replicated(h1,h2) SH-MPC(h1,h2) (s,h1)
ct
−→ (r ,h1), (s,h2)

ct
−→ (r ,h2) read replicated data

SH-MPC(h1,h2) Replicated(h1,h2) (s,h1)
ct
−→ (r ,h1), (s,h2)

ct
−→ (r ,h2) execute circuit and reveal output

Commitment(hp,hv) Local(hv) (s,hp)
occ
−−→ (r ,hv), (s,hv)

ohc
−−→ (r ,hv) open commitment

ZKP(hp,hv) Local(hv) (s,hv)
ct
−→ (r ,hv) send result and proof to verifier

Figure 13. Selected examples of protocol composition. The ct port of various protocols stands for cleartext input; the in
port of the MPC protocol represents secret input from a host; the cc port of the Commitment protocol represents creating a
commitment; the occ and ohc ports of the Local protocol respectively represent receiving the cleartext value of an opened
commitment and the commitment itself.

temporary computed in SH-MPC(h1,h2) corresponds to ex-
ecuting an MPC circuit and revealing the output to the
hosts. On the other hand, a temporary computed in Local(h3)
might not meaningfully be read by a statement executed un-
der SH-MPC(h1,h2) as it is unclear how the MPC back end
should read local data from an unrelated host.

Viaduct uses the customizable protocol composer to define
the set of source and destination protocols that can communi-
cate. The composer translates communication between two
protocols to a set of messages between hosts participating
in the protocols. Developers who want to extend Viaduct
with support for a new protocol must enumerate the set of
allowed compositions for the protocol and ensure that such
compositions are secure.
Formally, the protocol composer translates communica-

tion between two protocols P1 and P2 to a set of messages,
each of the form (P1,h1)

a
−→ (P2,h2), where the back end for

protocol P1 at host h1 sends a message to the back end for
protocol P2 at host h2 along port a. For a pair (P,h), it must
be the case that h ∈ hosts(P). The Viaduct runtime handles
the delivery of these messages between back ends.
Each protocol provides a set of ports that define how its

back end processes input from another protocol back end.
The ZKP protocol, for instance, has two ports: a secret input
port, and a public input port. The ZKP back end treats data
from the secret input port as the secret input of the prover,
while it treats data from its public input port as data known
to both the prover and verifier.
Recalling the previous example, when SH-MPC(h1,h2)

sends a value to Replicated(h1,h2), the MPC back ends in
h1 and h2 jointly execute a circuit in an MPC protocol. The
MPC back end at h1 then sends the revealed circuit output
to the cleartext back end (which implements the Replicated
protocol) at h1 along its cleartext port. There is a correspond-
ing message between the MPC and cleartext back ends at h2.
Step (3) in Figure 5, which depicts execution of the historical
millionaires’ problem, shows this protocol composition in
the context of a larger program.

Figure 13 shows a table of selected compositions and the
messages that constitute them. The table illustrates our in-
sight that protocol composition is a general abstraction to
represent the use of cryptographic mechanisms. The creation
of a commitment and its opening; the execution of an MPC
circuit and the revealing of its output; a prover sending a
zero-knowledge proof to a verifier—all of these are captured
by a composition of one protocol with another.

6 Implementation
We implemented the Viaduct compiler in about 20 KLoC
of Kotlin code, which includes code for the parser, the la-
bel constraint solver, protocol selection, and the runtime
system. The code written against the compiler’s extension
points—the protocol factory, the protocol composer, the cost
estimator, and the protocol back ends—runs to about 4 KLoC.
Viaduct uses the Z3 SMT solver [14] to solve the optimization
problem generated during protocol selection.

The compiler supports themore liberal surface syntax seen
in Figure 2 and Figure 3, as well as functions with bounded
polymorphism on parameter labels. The compiler special-
izes functions at each call site, allowing different compiled
implementations for the same function.

We implemented four protocol back ends for Viaduct:

Local/Replicated. The cleartext back end executes code
in Local and Replicated protocols. It maintains a store for ob-
jects that directly represent the temporaries and assignables
of the source program. Computations performed by the clear-
text back end are executed directly.

SH-MPC. This back end links Viaduct to ABY, a library
for two-party semi-honest MPC [16]. It maintains a store
of gate objects that represent circuit components executed
by ABY. Computations performed by the back end build
gate objects that represent the operation performed (e.g., an
addition in the source program creates an ADD gate).

TheABY framework supports execution of circuits in three
different schemes—arithmetic sharing, boolean sharing, and

11

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi

Yao’s garbled circuits—as well as conversions between these,
allowing for execution of mixed-protocol circuits. Viaduct
represents each scheme as a separate protocol, but all three
are implemented by a single back end. To generate efficient
mixed circuits, we follow Demmler et al. [16] and Ishaq et al.
[28] and estimate inputs to the cost estimator by measuring
execution time of individual operations under a particular
scheme and conversions between schemes. We perform mea-
surements for two settings: low-latency, high-bandwidth
(LAN), and high-latency, low-bandwidth (WAN).4 Thus the
cost estimator has two modes, each of which optimizes com-
piled programs for a specific network environment.

Commitment. This back end manages commitments, im-
plemented using SHA-256 hashes of data along with a nonce.
The back end for the commitment creator maintains a store
of cleartext values along with metadata for commitments.
The back end for the commitment receiver maintains the
set of commitments, as hashes. The commitment back end
cannot support computation.

ZKP. This back end links to libsnark [1], a library for
zkSNARKs (zero-knowledge Succinct Non-interactive AR-
guments of Knowledge). This back end maintains a store of
circuit gate objects. The prover and verifier both manage
cleartext values for the public inputs to the proof, while only
the prover manages cleartext values for the secret inputs. To
ensure the prover cannotmodify secret inputsmid-execution,
all secret inputs are “committed” by sending their hash to
the verifier. All proofs that use a secret input then include a
clause that equates the input to the pre-image of the hash
held by the verifier.
The libsnark library requires proving and verifying keys

to be generated for each unique circuit before the protocol
is executed. The current prototype requires a “dummy” run
of the compiled program to generate these keys.

7 Evaluation
To evaluate Viaduct, we address these research questions:
• RQ1: Is Viaduct expressive enough?
• RQ2: Is its compilation performance acceptable?
• RQ3: Does it generate efficient distributed programs?
• RQ4: How much does label inference reduce the anno-
tation burden for programmers?
• RQ5: What is the overhead of the runtime system?

Experiments used Dell OptiPlex 7050 machines with an
8-core Intel Core i7 7th Gen CPU and 16GB of RAM. Note
that for experiments involving time measurements (RQ2,
RQ3, RQ5), the numbers reported are over 5 trials and the
relative standard error is at most 6% of the sample mean.

4Existing work such as Büscher et al. [7] and Ishaq et al. [28] focus on
optimizing mixed circuits for ABY specifically, and as such these employ
more sophisticated reasoning about cost for ABY circuits. We consider it
future work to incorporate such techniques into Viaduct.

RQ1 - Expressiveness. Figure 14 shows the benchmarks
used for the experiments and the cryptography synthesized
by Viaduct for each benchmark. Several are from prior work,
rewritten in the Viaduct source language. Host configura-
tions are either semi-honest, as in Figure 2, where hosts A
and B trust each other for integrity; mutually distrusting as
in Figure 3; or are “hybrid” configurations where A and B
trust each other but host C is trusted by neither.

Our benchmarks show that Viaduct can compile programs
whose security demands a variety of cryptographic mech-
anisms. With hybrid configurations (interval, bet), Viaduct
combines MPC and ZKP to implement different components
of a single distributed program. Code for selected bench-
marks can be found in the supplemental technical report [2].

RQ2 - Scalability of Compilation. The twomain phases
of the Viaduct compiler are label inference and protocol
selection. Our benchmarks indicate that the overhead of label
inference is negligible: at most several hundred milliseconds.
As seen in Figure 14, the overhead for protocol selection is
more significant, but still on the order of several seconds for
most benchmarks. The longest running benchmark, k-means,
performs most of its computations in MPC. In this case, it
may be harder to converge to the optimal solution since the
solver generates a large mixed circuit, choosing between the
three MPC schemes supported by ABY.

RQ3 - Cost of Compiled Programs. To show that Via-
duct can compile efficient distributed programs, we chose
a subset of our benchmarks requiring the use of MPC and
compared the execution of optimal programs generated by
Viaduct—for each benchmark, one optimized for local area
networks (LAN) and another for wide area networks (WAN)
—with naive protocol assignments that perform all computa-
tion in MPC. The naive ABY assignments use either boolean
sharing or Yao garbled circuits, since arithmetic sharing can
only perform arithmetic operations.Wemeasured executions
in a 1Gbps LAN and simulated WAN (100Mbps bandwidth
and 50ms latency). We configured ABY to use 32-bit integers
and set its security parameter to 128 bits.
Figure 15 summarizes our results. For some benchmarks

(HHI score, hist. millionaires, median, two-round bidding),
computation can be securely moved from MPC to cleart-
ext protocols, making execution much more efficient. Even
for benchmarks that require computations to be almost en-
tirely inMPC (bio. match, k-means), Viaduct chooses efficient
mixed circuits that perform much better than the naive as-
signments entirely in boolean sharing or Yao circuits. Viaduct
replicates the result in Büscher et al. [7] (which specifically
targets the ABY framework) in choosing a mix of arithmetic
and Yao circuits as optimal assignments for the two bench-
marks from that paper, with the exception of the k-means
benchmark in the WAN setting.

12

Viaduct

Protocols Selection

Benchmark Description LAN / WAN LoC Ann Vars Time

battleship model of the board game RZ / RZ 79 12 1022 1.0
bet C bets who wins hist. millionaires b/w A & B CLRY / CLRY 79 7 1022 1.0
biometric match min distance b/w sample & database (from [7]) ALRY / ALRY 40 8 708 2.0
guessing game same as in fig. 3 RZ / RZ 16 6 193 0.4
HHI score compute market concentration index (from [46]) ALRY / LRY 22 3 285 1.1
historical millionaires same as in fig. 2 but with arrays LRY / LRY 17 3 187 0.7
interval A & B compute interval of combined points, RYZ / RYZ 45 9 660 2.8

C attests point is in interval
k-means cluster secret points from A & B (from [7]) ARY / RY 82 3 1684 7.9
k-means (unrolled) k-means w/ 3 unrolled iterations ARY / RY 174 3 3629 29.0
median compute median of A & B’s lists (from [30]) RY / RY 36 6 386 1.0
rock-paper-scissors A & B commit to moves then reveal CR / CR 56 6 741 1.0
two-round bidding A & B bid for a list of items LRY / LRY 34 4 575 1.7

Figure 14. Benchmark programs. Protocols give the protocols used in the compiled program for either the LAN or WAN
setting. Legend for protocols used: A, B, Y–ABY arithmetic/boolean/Yao sharing; C–Commitment; L–Local; R–Replicated;
Z–ZKP. Ann gives the minimum number of label annotations needed to write the program. Selection gives the number of
symbolic variables and run time in seconds for protocol selection, averaged across five runs.

Bool Yao Opt-LAN Opt-WAN

Benchmarks LAN WAN Comm LAN WAN Comm LAN WAN Comm LAN WAN Comm

bio. match 3.6 95.9 56.0 2.8 7.1 52.3 1.0 2.2 3.9 same as Opt-LAN
HHI score 0.8 9.7 7.0 0.5 1.6 2.7 0.3 1.1 0.5 0.3 0.9 0.6
hist. million. 1.0 90.6 4.8 0.6 1.6 3.1 0.3 0.7 0.005 same as Opt-LAN
k-means 56.5 696.1 1273.1 44.4 117.4 1051.3 17.7 35.8 180.0 same as Yao
median 11.5 1098.7 197.1 12.8 35.4 327.8 0.7 31.7 1.0 same as Opt-LAN
2-R bidding 17.3 184.7 233.0 17.8 184.5 233.0 3.1 155.5 4.7 same as Opt-LAN

Figure 15. Run time (in seconds) and communication (in MB) of select benchmark programs, averaged across five runs. Bool
and Yao are naive assignments using boolean sharing and Yao sharing respectively to execute MPC computations. Opt-LAN
and Opt-WAN are optimal assignments generated by Viaduct for the LAN and WAN setting respectively. Optimal time and
communication for a benchmark and execution setting pair are in bold.

LAN WAN

Benchmarks Time Slowdown Time Slowdown

bio. match 0.4 150% 1.5 50%
HHI score 0.3 0% 1.0 10%
hist. million. 0.3 0% 0.7 0%
k-means 1.2 1380% 4.1 770%
median 0.5 40% 31.5 0%
2-R bidding 1.6 90% 154.7 0%

Figure 16. Run time (in seconds) of LAN-optimized bench-
marks hand-written to use ABY directly and the slowdown of
running the same benchmarks through the Viaduct runtime
in LAN and WAN settings.

RQ4 - Annotation Burden of Security Labels. Security-
typed languages add some annotation burden when writ-
ing programs. In practice, labels on host declarations and

downgrading operations suffice to specify intended security
policies in Viaduct programs. To substantiate this claim, we
created two versions of each benchmark program. In one,
every variable has a label annotation; in the other, “erased”
version, all such labels are omitted.

For all benchmarks, Viaduct generates the same compiled
program for the fully labeled and the erased versions. Al-
though the inferred labels for the erased programs are not
exactly the same as in their manually labeled counterparts,
the differences do not affect the protocols chosen.5 The Ann
column in Figure 14 counts label annotations on erased pro-
grams. This is the minimum number of annotations needed
to write the program: effectively, the number of downgrades

5This mostly occurs with data publicly known to hosts (e.g. loop indices,
array lengths). Given hosts Alice and Bob, a fully-annotated benchmark
might have label A ⊓ B for the data, but Viaduct infers label (A ∧ B)← in
the erased version.

13

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi

plus the number of host declarations, each of which need an
authority label. The table shows that the annotation burden
is low: most benchmarks need only a few label annotations.

RQ5 - Overhead of Runtime System. The Viaduct run-
time introduces some overhead compared to using crypto-
graphic libraries like ABY directly. To measure this overhead,
we translated Viaduct’s LAN-optimized outputs for the MPC
benchmarks in Figure 15 to directly use the ABY frame-
work’s API. We then measured the performance of these
hand-written programs in the LAN and WAN settings.6
Figure 16 gives running times for the hand-written pro-

grams and the overhead of using the Viaduct runtime. For
most benchmarks, the Viaduct runtime incurs an overhead of
at most 150% in the LAN setting; the overhead is reduced to at
most 50% in the WAN setting where network delay is a more
significant factor. This overhead is due to the cost of interpre-
tation and dynamic circuit generation, and can be eliminated
by moving circuit generation to compile time [7, 34].

The markedly larger overhead of the k-means benchmark
is due to Viaduct recomputing intermediate results. The
benchmark has 8 outputs; while Viaduct evaluates 8 smaller
MPC circuits each with one output, the hand-written version
evaluates one larger circuit with 8 outputs, taking advantage
of shared intermediate computations. The compiler could,
with additional analysis, determine when output gates can
be grouped and executed in the same circuit. We leave this
to future work.

8 Related Work
Compilation to Cryptographic Protocols. The idea of

compiling a high-level program to a cryptographic proto-
col has been explored in the context of multiparty com-
putation [27] (e.g., Fairplay [35], SCVM [33], ObliVM [34],
OblivC [50], Wysteria [41], HyCC [7], SCALE-MAMBA [3]),
and that of zero-knowledge proofs (e.g., Pinocchio [38], Gep-
petto [13], Buffet [47], xjSNARK [32]). Earlier work is gener-
ally limited to the domain of a particular fixed cryptographic
task (e.g., MPC or ZKP); Viaduct’s novelty is synthesizing ef-
ficient protocols across cryptographic tasks. Like SCVM [33],
Viaduct can synthesize “hybrid” programs that perform com-
putations locally, replicated between hosts, or under MPC.
This is impossible in the simple two-point label model that
many MPC compilers [3, 34] use, which only distinguish
between public (low) and secret (high) information. Via-
duct also does not fix the number of hosts in a program
(unlike [33–35]), nor fix compiling programs only under a
semi-honest or malicious setting (unlike [32–34, 38, 41, 47]).

6Running LAN-optimized programs in the WAN setting does not skew
the results since Figure 15 shows that LAN-optimized programs perform
roughly the same as WAN-optimized programs in the WAN setting.

Program Partitioning. Another line of related work [19,
20, 52, 53] describes distributed computations using sequen-
tial programs and captures security requirements using in-
formation-flow labels. The Jif/split compiler [52, 53] synthe-
sizes simple cryptographic primitives such as cryptographic
commitments to satisfy security constraints that would oth-
erwise be impossible without relying on trusted principals.
Unlike Viaduct, Jif/split is not extensible to new protocols.
Later work [19, 20] proves computational soundness for a
similar system under a strong attacker that controls the net-
work and some of the hosts. However, this work does not
support replicating computations (only data replication is
supported), or the other protocols that Viaduct supports.

9 Conclusion
The Viaduct compiler compiles high-level, security-typed
programs into efficient distributed programs that employ a
variety cryptographic mechanisms to ensure security. The
compiler is agnostic to the set of available protocols, making
it easily extensible. Our prototype implementation attests to
the viability of our approach.
Promising avenues for future work remain. The label

model could be extended with availability policies [54], guid-
ing selection of fault-tolerant protocols like quorum repli-
cation [55] and MPC with guaranteed output delivery [26].
A more full-fledged implementation of Viaduct could sup-
port executing code on trusted execution environments like
hardware enclaves [25, 29, 36], the use of special-purpose
protocols like private set intersection [12, 39] and Oblivi-
ous RAM [45], and the incorporation of a more detailed and
accurate cost model [28].
Finally, a full correctness proof for the Viaduct compiler

would be a significant research achievement, bridging se-
curity notions defined by the programming-languages and
cryptography communities. One can see Viaduct source pro-
grams as ideal functionalities and the distributed programs
generated by the compiler as hybrid protocols which use ideal
functionalities implemented by cryptographic mechanisms.
Thus the conjectured correctness statement for Viaduct is a
simulation proof in the Universal Composability (UC) frame-
work [9], relating a Viaduct source program to the distributed
implementation generated by the compiler.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under grant CNS-1704788. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.
We thank our shepherd Mike Hicks and our anonymous

reviewers for their insightful suggestions. We also thank
Alexa van Hattum, Tobias Kappe, Ralph Recto, and Drew
Zagieboylo for feedback during the drafting of this paper.

14

Viaduct

References
[1] [n.d.]. https://github.com/scipr-lab/libsnark.
[2] Coşku Acay, Rolph Recto, Joshua Gancher, Andrew Myers, and Elaine

Shi. 2021. Viaduct: An Extensible, Optimizing Compiler for Secure
Distributed Programs (Technical Report).

[3] Abdelrahaman Aly, Daniele Cozzo, Marcel Keller, Emmanuela Orsini,
Dragos Rotaru, Peter Scholl, Nigel P. Smart, and Tim Wood. 2019.
SCALE–MAMBA v1.6 : Documentation. https://homes.esat.kuleuven.
be/~nsmart/SCALE

[4] Owen Arden, Jed Liu, and Andrew C. Myers. 2015. Flow-Limited
Authorization. In 28th IEEE Computer Security Foundations Symp. (CSF).
569–583. https://doi.org/10.1109/CSF.2015.42

[5] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler,
Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael Schwartzbach, and Tomas
Toft. 2009. Financial Cryptography and Data Security. Springer-Verlag,
Berlin, Heidelberg, Chapter Secure Multiparty Computation Goes Live,
325–343. https://doi.org/10.1007/978-3-642-03549-4_20

[6] Niklas Broberg, Bart van Delft, and David Sands. 2013. Paragon
for Practical Programming with Information-Flow Control. In 11th

ASIAN Symposium on Programming Languages and Systems, APLAS
2013. Springer, 217–232. https://doi.org/10.1007/978-3-319-03542-0_16

[7] Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kretzmer,
and Thomas Schneider. 2018. HyCC: Compilation of Hybrid Protocols
for Practical Secure Computation. In 25th ACM Conf. on Computer and
Communications Security (CCS). ACM, New York, NY, USA, 847–861.
https://doi.org/10.1145/3243734.3243786

[8] Ran Canetti. 2000. Security and Composition of Multiparty Cryp-
tographic Protocols. Journal of Cryptology (2000), 143–202. https:
//doi.org/10.1007/s001459910006

[9] Ran Canetti. 2001. Universally Composable Security: A New Par-
adigm for Cryptographic Protocols. In 42nd Annual IEEE Sympo-
sium on Foundations of Computer Science. IEEE, 136–145. https:
//doi.org/10.1109/SFCS.2001.959888

[10] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. 2002.
Universally composable two-party and multi-party secure computa-
tion. In 34th Annual ACM Symposium on Theory of Computing. ACM,
494–503. https://doi.org/10.1145/509907.509980

[11] Ethan Cecchetti, Andrew C. Myers, and Owen Arden. 2017. Non-
malleable Information Flow Control. In 24th ACM Conf. on Com-
puter and Communications Security (CCS). ACM, 1875–1891. https:
//doi.org/10.1145/3133956.3134054

[12] Hao Chen, Kim Laine, and Peter Rindal. 2017. Fast Private Set Inter-
section from Homomorphic Encryption. In 24th ACM Conf. on Com-
puter and Communications Security (CCS), Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). 1243–1255.
https://doi.org/10.1145/3133956.3134061

[13] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Ben-
jamin Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. 2015.
Geppetto: Versatile verifiable computation. In IEEE Symp. on Security
and Privacy. IEEE, 253–270. https://doi.org/10.1109/SP.2015.23

[14] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: an efficient SMT
solver. In Proceedings of the Theory and Practice of Software, 14th Int’l
Conf. on Tools and Algorithms for the Construction and Analysis of
Systems. Springer-Verlag, Berlin, Heidelberg, 337–340. https://doi.org/
10.1007/978-3-540-78800-3_24

[15] Christian Decker and Roger Wattenhofer. 2014. Bitcoin transaction
malleability and MtGox. In 19th European Symposium on Research in
Computer Security. Springer, 313–326. https://doi.org/10.1007/978-3-
319-11212-1_18

[16] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY -
A Framework for Efficient Mixed-Protocol Secure Two-Party Compu-
tation. In Network and Distributed System Security Symp. The Internet
Society. https://doi.org/10.14722/ndss.2015.23113

[17] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. 2013. An Empirical Study of CryptographicMisuse in Android
Applications. In ACM Conf. on Computer and Communications Security
(CCS). 73–84. http://doi.acm.org/10.1145/2508859.2516693

[18] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
1993. The Essence of CompilingWith Continuations. InACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI)
(PLDI ’93). 237–247. https://doi.org/10.1145/155090.155113

[19] Cédric Fournet, Guervan le Guernic, and Tamara Rezk. 2009.
A Security-Preserving Compiler for Distributed Programs: From
Information-Flow Policies to Cryptographic Mechanisms. In 16th

ACM Conf. on Computer and Communications Security (CCS). 432–441.
https://doi.org/10.1145/1653662.1653715

[20] Cédric Fournet and Tamara Rezk. 2008. Cryptographically sound
implementations for typed information-flow security. In 35th ACM
Symp. on Principles of Programming Languages (POPL). 323–335. https:
//doi.org/10.1145/1328438.1328478

[21] GDPR 2016. General Data Protection Regulation. https://gdpr-info.eu
[22] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan

Boneh, and Vitaly Shmatikov. 2012. The most dangerous code in the
world: validating SSL certificates in non-browser software. In 19th

ACM Conf. on Computer and Communications Security (CCS), Ting
Yu, George Danezis, and Virgil D. Gligor (Eds.). ACM, 38–49. https:
//doi.org/10.1145/2382196.2382204

[23] Joseph A. Goguen and Jose Meseguer. 1982. Security Policies and
Security Models. In IEEE Symp. on Security and Privacy. 11–20. https:
//doi.org/10.1109/SP.1982.10014

[24] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to
Play any Mental Game. In 19th Annual ACM Symposium on Theory
of Computing, Alfred V. Aho (Ed.). 218–229. https://doi.org/10.1145/
28395.28420

[25] Anitha Gollamudi, Stephen Chong, and Owen Arden. 2019. Informa-
tion Flow Control for Distributed Trusted Execution Environments. In
32nd IEEE Computer Security Foundations Symp. (CSF). IEEE, 304–318.
https://doi.org/10.1109/CSF.2019.00028

[26] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. 2015. Constant-Round
MPC with Fairness and Guarantee of Output Delivery. , 63–82 pages.
https://doi.org/10.1007/978-3-662-48000-7_4

[27] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve
Zdancewic. 2019. SoK: General Purpose Compilers for Secure Multi-
Party Computation. In IEEE Symp. on Security and Privacy. 1220–1237.
https://doi.org/10.1109/SP.2019.00028

[28] Muhammad Ishaq, Ana Milanova, and Vassilis Zikas. 2019. Efficient
MPC via Program Analysis: A Framework for Efficient Optimal Mixing.
In 26th ACM Conf. on Computer and Communications Security (CCS).
ACM, 1539–1556. https://doi.org/10.1145/3319535.3339818

[29] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD memory
encryption.

[30] Florian Kerschbaum. 2011. Automatically Optimizing Secure Compu-
tation. In 18th ACM Conf. on Computer and Communications Security
(CCS). https://doi.org/10.1145/2046707.2046786

[31] G. Kildall. 1973. A Unified Approach to Global Program Optimization.
In ACM Symp. on Principles of Programming Languages (POPL).

[32] Ahmed Kosba, Charalampos Papamanthou, and Elaine Shi. 2018. xJs-
nark: A Framework for Efficient Verifiable Computation. In IEEE
Symp. on Security and Privacy. IEEE, 944–961. https://doi.org/10.
1109/SP.2018.00018

[33] Chang Liu, Yan Huang, Elaine Shi, Jonathan Katz, and Michael Hicks.
2014. Automating efficient RAM-model secure computation. In IEEE
Symp. on Security and Privacy. IEEE, 623–638. https://doi.org/10.1109/
SP.2014.46

[34] Chang Liu, Xiao ShaunWang, Kartik Nayak, YanHuang, and Elaine Shi.
2015. ObliVM: A Programming Framework for Secure Computation. In
25th ACM Symp. on Operating System Principles (SOSP). IEEE, 359–376.

15

https://homes.esat.kuleuven.be/~nsmart/SCALE
https://homes.esat.kuleuven.be/~nsmart/SCALE
https://doi.org/10.1109/CSF.2015.42
https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1007/978-3-319-03542-0_16
https://doi.org/10.1145/3243734.3243786
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/s001459910006
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/509907.509980
https://doi.org/10.1145/3133956.3134054
https://doi.org/10.1145/3133956.3134054
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1109/SP.2015.23
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-11212-1_18
https://doi.org/10.1007/978-3-319-11212-1_18
https://doi.org/10.14722/ndss.2015.23113
http://doi.acm.org/10.1145/2508859.2516693
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/1653662.1653715
https://doi.org/10.1145/1328438.1328478
https://doi.org/10.1145/1328438.1328478
https://gdpr-info.eu
https://doi.org/10.1145/2382196.2382204
https://doi.org/10.1145/2382196.2382204
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1109/CSF.2019.00028
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1145/3319535.3339818
https://doi.org/10.1145/2046707.2046786
https://doi.org/10.1109/SP.2018.00018
https://doi.org/10.1109/SP.2018.00018
https://doi.org/10.1109/SP.2014.46
https://doi.org/10.1109/SP.2014.46

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi

https://doi.org/10.1109/SP.2015.29
[35] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. 2004.

Fairplay - A Secure Two-Party Computation System. In 13th Usenix
Security Symposium. 287–302. http://www.usenix.org/publications/
library/proceedings/sec04/tech/malkhi.html

[36] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday Savagaonkar. 2013.
Innovative Instructions and Software Model for Isolated Execution.
InWorkshop on Hardware and Architectural Support for Security and
Privacy. https://doi.org/10.1145/2487726.2488368

[37] Andrew C. Myers. 1999. JFlow: Practical Mostly-Static Information
Flow Control. In 26th ACM Symp. on Principles of Programming Lan-
guages (POPL). 228–241. https://doi.org/10.1145/292540.292561

[38] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013.
Pinocchio: Nearly practical verifiable computation. In IEEE Symp. on
Security and Privacy. IEEE, 238–252. https://doi.org/10.1109/SP.2013.47

[39] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2019. SpOT-
Light: Lightweight Private Set Intersection from Sparse OT Extension.
In Advances in Cryptology – CRYPTO 2019. Springer, 401–431. https:
//doi.org/10.1007/978-3-030-26954-8_13

[40] François Pottier and Vincent Simonet. 2002. Information flow inference
for ML. In 29th ACM Symp. on Principles of Programming Languages
(POPL). 319–330. https://doi.org/10.1145/503272.503302

[41] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. 2014. Wys-
teria: A Programming Language for Generic, Mixed-Mode Multi-
party Computations. In IEEE Symp. on Security and Privacy. 655–670.
https://doi.org/10.1109/SP.2014.48

[42] Jakob Rehof and Torben Æ. Mogensen. 1996. Tractable Constraints in
Finite Semilattices. In 3rd International Symposium on Static Analysis
(Lecture Notes in Computer Science). Springer-Verlag, 285–300. https:
//doi.org/10.1007/3-540-61739-6_48

[43] Daniel Edwin Rutherford. 1965. Introduction to Lattice Theory. Oliver
and Boyd.

[44] Andrei Sabelfeld and Andrew C. Myers. 2003. Language-Based
Information-Flow Security. IEEE Journal on Selected Areas in Commu-
nications 21, 1 (Jan. 2003), 5–19. https://doi.org/10.1109/JSAC.2002.
806121

[45] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher,
Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM:
an extremely simple oblivious RAM protocol. In 20th ACM Conf. on
Computer and Communications Security (CCS), Ahmad-Reza Sadeghi,

Virgil D. Gligor, and Moti Yung (Eds.). 299–310. https://doi.org/10.
1145/2508859.2516660

[46] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia,
Andrei Lapets, and Azer Bestavros. 2019. Conclave: secure multi-
party computation on big data. In ACM SIGOPS/EuroSys European
Conference on Computer Systems, George Candea, Robbert van Renesse,
and Christof Fetzer (Eds.). 3:1–3:18. https://doi.org/10.1145/3302424.
3303982

[47] Riad S. Wahby, Srinath Setty, Zuocheng Ren, Andrew J. Blumberg, and
Michael Walfish. 2015. Efficient RAM and Control Flow in Verifiable
Outsourced Computation. In Network and Distributed System Security
Symp. The Internet Society. https://doi.org/10.14722/ndss.2015.23097

[48] Andrew C. Yao. 1982. Protocols for Secure Computations. In 23rd

annual IEEE Symposium on Foundations of Computer Science. 160–164.
https://doi.org/10.1109/SFCS.1982.38

[49] Drew Zagieboylo, G. Edward Suh, and Andrew C. Myers. 2019. Using
Information Flow to Design an ISA that Controls Timing Channels. In
32nd IEEE Computer Security Foundations Symp. (CSF). https://doi.org/
10.1109/CSF.2019.00026

[50] Samee Zahur and David Evans. 2015. Obliv-C: A Language for Exten-
sible Data-Oblivious Computation. IACR Cryptol. ePrint Arch. (2015).
http://eprint.iacr.org/2015/1153

[51] Steve Zdancewic and Andrew C. Myers. 2001. Robust Declassification.
In 14th IEEE Computer Security Foundations Workshop (CSFW). 15–23.
https://doi.org/10.1109/CSFW.2001.930133

[52] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C.
Myers. 2002. Secure Program Partitioning. ACM Trans. on Computer
Systems 20, 3 (Aug. 2002), 283–328. https://doi.org/10.1145/566340.
566343

[53] Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve
Zdancewic. 2003. Using Replication and Partitioning to Build Secure
Distributed Systems. In IEEE Symp. on Security and Privacy. 236–250.
https://doi.org/10.1109/SECPRI.2003.1199340

[54] Lantian Zheng and Andrew C. Myers. 2005. End-to-End Availability
Policies and Noninterference. In 18th IEEE Computer Security Founda-
tions Workshop (CSFW). 272–286. https://doi.org/10.1109/CSFW.2005.
16

[55] Lantian Zheng and Andrew C. Myers. 2014. A Language-Based Ap-
proach to Secure Quorum Replication. In 9th ACM SIGPLAN Work-
shop on Programming Languages and Analysis for Security (PLAS).
https://doi.org/10.1145/2637113.2637117

16

https://doi.org/10.1109/SP.2015.29
http://www.usenix.org/publications/library/proceedings/sec04/tech/malkhi.html
http://www.usenix.org/publications/library/proceedings/sec04/tech/malkhi.html
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/292540.292561
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1145/503272.503302
https://doi.org/10.1109/SP.2014.48
https://doi.org/10.1007/3-540-61739-6_48
https://doi.org/10.1007/3-540-61739-6_48
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1145/3302424.3303982
https://doi.org/10.1145/3302424.3303982
https://doi.org/10.14722/ndss.2015.23097
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/CSF.2019.00026
https://doi.org/10.1109/CSF.2019.00026
http://eprint.iacr.org/2015/1153
https://doi.org/10.1109/CSFW.2001.930133
https://doi.org/10.1145/566340.566343
https://doi.org/10.1145/566340.566343
https://doi.org/10.1109/SECPRI.2003.1199340
https://doi.org/10.1109/CSFW.2005.16
https://doi.org/10.1109/CSFW.2005.16
https://doi.org/10.1145/2637113.2637117

Viaduct

A Termination and Optimality of the Label Inference Algorithm
In this section, we prove that the iterative analysis we use for label inference always terminates and computes the minimum-
authority solution. First, we construct the→ operator over the lattice of principals, which occurs in the update rules.

A.1 Constructing the→ Operator
We show that any free distributive lattice, like our lattice of principals, is a Heyting algebra, and thus the→ operator we use
in our label inference algorithm (§3.2) is well-defined. While this is a standard result in algebra, we believe it is illuminating to
see the actual construction of→, as we use its concrete value to compute minimum-authority labels.

A.1.1 Free Distributive Lattices. Let P be an arbitrary set. The standard construction for the free distributive lattice over
P takes finite sets of finite subsets of P as elements, which we write as

{Ai }i ∈[n] (where Ai ⊆ P).

An element of this form is interpreted as a join of meets, that is, {Ai }i ∈[n] intuitively stands for(∧
A1

)
∨ . . . ∨

(∧
An

)
.

In addition to every Ai being finite, we require that there is no Ai and Aj such that Ai ⊆ Aj for i , j since this makes Aj
redundant per our interpretation (i.e. (

∧
Ai) ∨

(∧
Aj

)
=

∧
Ai). We assume all such components are dropped implicitly.

Define
{Ai }i ∈[n] ∨ {Bj }j ∈[m] = {Ai }i ∈[n] ∪ {Bj }j ∈[m]

and
{Ai }i ∈[n] ∧ {Bj }j ∈[m] = {Ai ∪ Bj | i ∈ [n], j ∈ [m]}.

It is straightforward to verify that these definitions satisfy the properties for being the join and the meet, respectively. It is also
easy to see that

0 = {} and 1 = {{}}.
Finally, ordering can be derived in the standard way for distributive lattices:

A ≤ B ⇐⇒ A ∨ B = B.

We find it useful to have a more direct definition, which we can derive by expanding the previous definition:

{Ai }i ∈[n] ≤ {Bj }j ∈[m] ⇐⇒ ∀i ∈ [n].∃j ∈ [m].Bj ⊆ Ai .

A.1.2 Heyting Algebras. A Heyting algebra is a bounded distributive lattice where every inequality of the form

A ∧ X ≤ B

has a greatest solution. This solution is named A→ B to appeal to logical intuition as A→ B is the weakest (i.e. the greatest)
proposition such that A ∧ (A→ B) logically implies B. We show that every free distributive lattice forms a Heyting algebra.
Define

{Ai }i ∈[n]→ {Bj }j ∈[m] =
∧
i ∈[n]

{Bj \Ai | j ∈ [m]}.

First, we claim this is in fact a solution to the above inequality, that is,

{Ai }i ∈[i] ∧
∧
i ∈[n]

{Bj \Ai | j ∈ [m]} ≤ {Bj }j ∈[j].

Proof. By applying the definition of ∧ repeatedly (i + 1 times), we can rewrite the left-hand side as

{Ai ∪ (Bj1 \A1) ∪ . . . ∪ (Bjn \An) | i ∈ [n], j1, . . . , jn ∈ [m]}.

Using the direct definition of ≤ from before, it suffices to show that there exists j ∈ [m] such that

Bj ⊆ Ai ∪ (Bj1 \A1) ∪ . . . ∪ (Bjn \An)

for all i , j1, . . . , jn . Picking j = ji , we get

Bji ⊆ Ai ∪ (Bji \Ai) ⊆ Ai ∪ (Bj1 \A1) ∪ . . . ∪ (Bjn \An).

□
17

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi

Next, we need to prove that this solution is the greatest. Assume there is an X such that A ∧ X ≤ B where A = {Ai }i ∈[n],
B = {Bj }j ∈[m], and X = {Xk }k ∈[o]. Our goal is to show

{Xk }k ∈[o] ≤
∧
i ∈[n]

{Bj \Ai | j ∈ [m]}.

Proof. Using the universal property of ∧ and the direct definition of ≤ from before, it is sufficient to prove

∀i ∈ [n],k ∈ [o].∃j ∈ [m].Bj \Ai ⊆ Xk .

Let i and k be arbitrary. Since {Ai } ≤ A and {Xk } ≤ X , we know

{Ai } ∧ {Xk } ≤ A ∧ X ≤ B =⇒ ∃j ∈ [m].Bj ⊆ Ai ∪ Xk

=⇒ ∃j .Bj \Ai ⊆ Xk .

□

A.2 Termination and Optimality
It is well-known that iterative analysis always terminates given that the function defined by the update rules is monotone, and
that the lattice over which the algorithm runs is of finite height [31]. Because the update rules take the meet of the current
solution with some other lattice element, it is immediate that the function is monotone. Because it is the free distributive
lattice, all elements of the principal lattice can be represented in normal form as a join of meets of atomic principals, and thus
is of finite size when the set of atomic principals is finite. Thus the principal lattice is of finite height as long as it is generated
from a finite set of atomic principals. We know any program can only reference a finite set of unique atomic principals in its
text since any program has a finite set of labels in its text, and each label can only mention a finite set of atomic principals.
Thus for any program, the principal lattice is of finite height.

Finally, we show that the algorithm computes the optimal (minimum-authority) solution. It is also well-known by appeal to
Kleene’s fixed-point theorem that iterative analysis computes the greatest-fixpoint solution of a monotone function. Thus to
prove optimality it is sufficient to show that any solution to the constraints must lower-bound the current solution computed
from the update rules, and thus must lower-bound the greatest-fixpoint solution computed by the algorithm.

Proof. We prove the statement by induction over the number of iterations performed by iterative analysis. The base case is
immediate since all principal variables are initialized to 1, the top of the principal lattice.
To prove the inductive case, we perform a case analysis over the update rules:
Case 1: Li+11 := Li1 ∧ L

i
2. For solution including L′1 and L

′
2 such that L′1 ⇒ L′2, we know by the inductive hypothesis L′1 ⇒ Li1

and L′2 ⇒ Li2, and thus L′1 ⇒ Li2 by transitivity. Since ∧ is the greatest lower bound, L′1 ⇒ Li1 ∧ L
i
2 = Li+11 , as needed.

Case 2: Li+11 := Li1 ∧ (p2→ Li3). For solution including L′1 and L′3 such that L′1 ∧ p2 ⇒ L′3, we know by the inductive
hypothesis L′1 ⇒ Li1 and L

′
3 ⇒ Li3, and thus L′1 ∧ p2 ⇒ Li3 by transitivity. By definition we know p2→ Li3 is the greatest

principal p such that p ∧ p2 ⇒ Li3, so L
′
1 ⇒ p2→ Li3. Since ∧ is the greatest lower bound, L′1 ⇒ Li1 ∧ (p2→ Li3) = Li+11 as

needed.
Case 3: Li+11 := Li1 ∧ (L

i
2 ∨ L

i
3). For solution including L′1, L

′
2, and L

′
3 such that L′1 ⇒ (L

′
2 ∨ L

′
3), we know by the inductive

hypothesis that L′1 ⇒ Li1 and L′2 ⇒ Li2 and L′3 ⇒ Li3. Thus L
′
1 ⇒ L′2 ∨ L

′
3 ⇒ Li2 ∨ L

i
3 and since ∧ is the greatest lower

bound, L′1 ⇒ Li1 ∧ (L
i
2 ∨ L

i
3) = Li+11 as needed.

□

B Selected benchmarks
The following sections have the Viaduct source code for a select number of benchmarks and a description of the distributed
programs that the compiler generates for each.

For the benchmarks used in RQ5, we also include the Kotlin code for the “bare ABY” programs with which we compared the
performance of Viaduct compiled programs. The programs use the Kotlin JNI shim to ABY that the Viaduct compiler uses for
its ABY back end. The Kotlin code for the most part uses the ABY API directly using the ABYParty class; the only code that
is specific to Viaduct is ABYCircuitBuilder, which is a class that contains references to the arithmetic, and boolean, and Yao
circuit objects used to build gates; and Host, which is a wrapper to the String class that contains the name of the current host.
Participating hosts each run a copy of the Kotlin program, so the code uses the ABY API builds the circuit for both hosts

(named alice and bob by convention). In some cases the code is the same for both hosts; in other cases the code slightly differs
(e.g. alice builds an IN gate while bob build a DummyIN gate), which case the code cases on which is the current host (supplied
by the host parameter).

18

Viaduct

B.1 Battleship
This benchmark runs a game of battleship between Alice and Bob: each player maintains a set of ships located on a map, and
then take turns attacking locations where they think an enemy ship resides. Unlike the original board game, in this version the
board is one-dimensional and each ship is only 1 unit long.
To execute this program, each player provides the coordinates of their ships as input, which is stored in a private array

(Lines 8–11). Then the players execute a cheating detection routine (Lines 20–30): each player reveals to the other player that
their ships are not placed in the same location. In the compiled distributed program, this routine is implemented with each
player sending zero-knowledge proofs to attest that the locations for each pair of their ships are not equal. A zero-knowledge
proof is required here to prevent leaking the locations of the ships.

Alice and Bob then take turns attacking coordinates where they think an enemy ship is located, until one of them sinks all of
the ships of the other. On Alice’s turn, she takes a location to attack as input (line 43) and sends this location to Bob, who then
sends zero-knowledge proofs attesting whether Alice has sunk one of his battleships (Lines 46–52). Again, zero-knowledge
proofs are required here to prevent leaking the locations of ships. Bob’s turn is symmetric to Alice’s.

1 host alice : {A}

2 host bob : {B}

3

4 // load inputs into endorsed arrays ,

5 // so that they cannot be modified further

6 val aships = Array[int]{A ∧ B<-}(5);

7 val bships = Array[int]{B ∧ A<-}(5);

8 for (var i: int = 0; i < 5; i+=1) {

9 aships[i] = endorse (input int from alice) from {A};

10 bships[i] = endorse (input int from bob) from {B};

11 }

12

13 var awins: bool{A ⊓ B} = false;

14

15 // if someone put multiple battleships in the same cell ,

16 // they automatically lose

17 var acheated: bool{A ⊓ B} = false;

18 var bcheated: bool{A ⊓ B} = false;

19

20 for (var j: int{A ⊓ B} = 0; j < 5 ∧ !acheated ∧ !bcheated; j += 1) {

21 for (var k: int{A ⊓ B} = j + 1; k < 5 ∧ !acheated ∧ !bcheated; k += 1) {

22 if (declassify (aships[j] == aships[k]) to {A ⊓ B}) {

23 acheated = true;

24 }

25

26 if (declassify(bships[j] == bships[k]) to {A ⊓ B}) {

27 bcheated = true;

28 }

29 }

30 }

31

32 if (! acheated ∧ !bcheated) {

33 var ascore: int{A ⊓ B} = 0;

34 var bscore: int{A ⊓ B} = 0;

35

36 var playing: bool{A ⊓ B} = true;

37 var aturn: bool{A ⊓ B} = true;

38

39 // keep playing until someone sinks all the other person 's battleships

40 while (playing) {

19

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi

41 if (aturn) {

42 val amove: int{A ⊓ B->} =

43 declassify (input int from alice) to {A ⊓ B->};

44 var amove_trusted: int{A ⊓ B} = endorse amove from {A ⊓ B->};

45 var ahit: bool{A ⊓ B} = false;

46 for (var aj: int{A ⊓ B} = 0; aj < 5; aj += 1) {

47 if (declassify (bships[aj] == amove_trusted) to {A ⊓ B}) {

48 ascore += 1;

49 bships[aj] = 0;

50 ahit = true;

51 }

52 }

53

54 output ahit to alice;

55 output ahit to bob;

56 aturn = false;

57 } else {

58 var bmove: int{B ⊓ A->} =

59 declassify (input int from bob) to {B ⊓ A->};

60 val bmove_trusted: int{A ⊓ B} = endorse bmove from {B ⊓ A->};

61

62 var bhit: bool{A ⊓ B} = false;

63 for (var bj: int{A ⊓ B} = 0; bj < 5; bj += 1) {

64 if (declassify (aships[bj] == bmove_trusted) to {A ⊓ B}) {

65 bscore += 1;

66 aships[bj] = 0;

67 bhit = true;

68 }

69 }

70

71 output bhit to alice;

72 output bhit to bob;

73 aturn = true;

74 }

75

76 playing = ascore < 5 ∧ bscore < 5;

77 }

78

79 awins = ascore == 5;

80 output awins to alice;

81 output awins to bob;

82 } else {

83 output bcheated to alice;

84 output bcheated to bob;

85 }

B.2 Biometric Matching
This benchmark computes the minimum Euclidean distance of Bob’s sample to some region in Alice’s database, a common
routine in bioinformatics. The Euclidean distance is computed by the match function, which takes as input two points in Alice’s
database (db1, db2) and Bob’s sample (s1, s2) and returns the Euclidean distance between these, given as the out parameter res.
Note that the labels for the formal parameters of match are upper-bounds; in the Viaduct source language, the concrete label of
the arguments at a call site can be referenced in the body of a function by using the parameter name corresponding to the
argument, as seen in the labels for dist1 and dist2 (Lines 8–9).

20

Viaduct

In the compiled implementation generated by Viaduct, Alice and Bob store their respective database and samples locally
and then use an MPC protocol to compute the minimum Euclidean distance.

1 host alice: {A ∧ B<-}

2 host bob: {B ∧ A<-}

3

4 fun match(

5 db1: int{A ∧ B<-}, db2: int{A ∧ B<-}, s1: int{B ∧ A<-}, s2: int{B ∧ A<-},

6 res: out int{A ∧ B}

7) {

8 val dist1: int{db1 ∧ s1} = db1 - s1;

9 val dist2: int{db2 ∧ s2} = db2 - s2;

10 out res = (dist1 * dist1) + (dist2 * dist2);

11 }

12

13 val n: int{A ⊓ B} = 500;

14 val d: int{A ⊓ B} = 2;

15

16 val a_db = Array[int]{A ∧ B<-}(n * d);

17 val b_sample = Array[int]{B ∧ A<-}(d);

18

19 for (var i: int{A ⊓ B} = 0; i < n*d; i += 1) {

20 a_db[i] = input int from alice;

21 }

22

23 for (var i: int{A ⊓ B} = 0; i < d; i += 1) {

24 b_sample[i] = input int from bob;

25 }

26

27 match(a_db[0], a_db[1], b_sample [0], b_sample [1], val init_min);

28 var min_dist: int{A ∧ B} = init_min;

29

30 for (var i: int{A ⊓ B} = 0; i < n; i += 1) {

31 match(a_db[(i*d)], a_db[(i*d)+1], b_sample [0], b_sample [1], val dist);

32

33 if (dist < min_dist) {

34 min_dist = dist;

35 }

36 }

37

38 val result: int{A ⊓ B} = declassify min_dist to {A ⊓ B};

39 output result to alice;

40 output result to bob;

The program is compiled to one semantically equivalent to the Kotlin program below that uses ABY directly.
1 fun match_alice(db1: Int , db2: Int): Share {

2 val tmp = builder.arithCircuit.putINGate(db1.toBigInteger (), BITLEN , builder.role)

3 val tmp1 = builder.arithCircuit.putDummyINGate(BITLEN)

4 val dist1 = builder.arithCircuit.putSUBGate(tmp , tmp1)

5

6 val tmp3 = builder.arithCircuit.putINGate(db2.toBigInteger (), BITLEN , builder.role)

7 val tmp4 = builder.arithCircuit.putDummyINGate(BITLEN)

8 val dist2 = builder.arithCircuit.putSUBGate(tmp3 , tmp4)

9

10 val tmp8 = builder.arithCircuit.putMULGate(dist1 , dist1)

21

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi

11 val tmp11 = builder.arithCircuit.putMULGate(dist2 , dist2)

12 val tmp12 = builder.arithCircuit.putADDGate(tmp8 , tmp11)

13 return builder.yaoCircuit.putA2YGate(tmp12)

14 }

15

16 fun match_bob(s1: Int , s2: Int): Share {

17 val tmp = builder.arithCircuit.putDummyINGate(BITLEN)

18 val tmp1 = builder.arithCircuit.putINGate(s1.toBigInteger (), BITLEN , builder.role)

19 val dist1 = builder.arithCircuit.putSUBGate(tmp , tmp1)

20

21 val tmp3 = builder.arithCircuit.putDummyINGate(BITLEN)

22 val tmp4 = builder.arithCircuit.putINGate(s2.toBigInteger (), BITLEN , builder.role)

23 val dist2 = builder.arithCircuit.putSUBGate(tmp3 , tmp4)

24

25 val tmp8 = builder.arithCircuit.putMULGate(dist1 , dist1)

26 val tmp11 = builder.arithCircuit.putMULGate(dist2 , dist2)

27 val tmp12 = builder.arithCircuit.putADDGate(tmp8 , tmp11)

28 return builder.yaoCircuit.putA2YGate(tmp12)

29 }

30

31

32 fun benchLANBiomatch(host: Host , aby: ABYParty , builder: ABYCircuitBuilder) {

33 val n = 500

34 val d = 4

35

36 when (host) {

37 'alice ' => {

38 val a_db = Array <Int >(n * d) { 0 }

39 var i = 0

40 while (i < n * d) {

41 a_db[i] = input.nextInt ()

42 i += 1

43 }

44

45 var min_dist = match_alice(a_db[0], a_db [1])

46 var i_2 = 0

47 while (i_2 < n) {

48 val db1 = a_db[i_2 * d]

49 val db2 = a_db[(i_2 * d) + 1]

50 val dist = match_alice(db1 , db2)

51 val tmp50 = builder.yaoCircuit.putGTGate(min_dist , dist)

52 val mux = builder.yaoCircuit.putMUXGate(dist , min_dist , tmp50)

53 min_dist = mux

54 i_2 += 1

55 }

56

57 val out = builder.yaoCircuit.putOUTGate(min_dist , Role.ALL)

58 executeABYCircuit(aby)

59 println(out.clearValue32.toInt())

60 }

61

62 'bob ' => {

63 val b_sample = Array <Int >(d) { 0 }

64 var i = 0

22

Viaduct

65 while (i < d) {

66 b_sample[i] = input.nextInt ()

67 i += 1

68 }

69

70 var min_dist = match_bob(b_sample [0], b_sample [1])

71 var i_2 = 0

72 while (i_2 < n) {

73 val s1 = b_sample [0]

74 val s2 = b_sample [1]

75 val dist = match_bob(s1, s2)

76 val tmp50 = builder.yaoCircuit.putGTGate(min_dist , dist)

77 val mux = builder.yaoCircuit.putMUXGate(dist , min_dist , tmp50)

78 min_dist = mux

79 i_2 += 1

80 }

81

82 val out = builder.yaoCircuit.putOUTGate(min_dist , Role.ALL)

83 executeABYCircuit(aby)

84 println(out.clearValue32.toInt())

85 }

86

87 else => throw ViaductInterpreterError('unknown host ')

88 }

89 }

B.3 Interval
This benchmarks computes the interval in which Alice and Bob’s private points reside, and then checks whether Chuck’s
private point resides in the interval. In the compiled implementation generated by the Viaduct compiler, Alice and Bob execute
an MPC protocol to compute the interval in which their points lie (Lines 23–line 29). They then send the interval to Chuck,
who sends either Alice or Bob a zero-knowledge proof to attest whether his point lies within the interval (line 44). If Alice
receives the zero-knowledge proof, she verifies and then sends the result to Bob, and then they both output the result. The
case where Bob receives the zero-knowledge proof is symmetric.

1 host alice : {A ∧ B<-}

2 host bob : {B ∧ A<-}

3 host chuck : {C}

4

5 // Chuck can read these public parameters ,

6 // but doesn 't need to trust them since he is not using them

7 val a_num_points: int{A ⊓ B ⊓ C->} = 5;

8 val b_num_points: int{A ⊓ B ⊓ C->} = 5;

9 val num_points: int{A ⊓ B ⊓ C->} = a_num_points + b_num_points;

10

11 val chuck_point: int{C ∧ (A∧B)<-} =

12 endorse (input int from chuck) to {C ∧ (A∧B)<-} from {C};

13

14 val points = Array[int]{A ∧ B}(num_points);

15 for (var i: int{A ⊓ B ⊓ C->} = 0; i < a_num_points; i += 1) {

16 points[i] = input int from alice;

17 }

18

19 for (var i: int{A ⊓ B ⊓ C->} = 0; i < b_num_points; i += 1) {

20 points[a_num_points+i] = input int from bob;

23

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi

21 }

22

23 var min_point: int{A ∧ B} = points [0];

24 var max_point: int{A ∧ B} = points [0];

25

26 for (var i: int{A ⊓ B ⊓ C->} = 1; i < num_points; i += 1) {

27 min_point = min(min_point , points[i]);

28 max_point = max(max_point , points[i]);

29 }

30

31 val min_point_public: int{A ⊓ B ⊓ C->} =

32 declassify min_point to {A ⊓ B ⊓ C->};

33

34 val max_point_public: int{A ⊓ B ⊓ C->} =

35 declassify max_point to {A ⊓ B ⊓ C->};

36

37 val min_point_trusted: int{A ⊓ B ⊓ C} =

38 endorse min_point_public from {A ⊓ B ⊓ C->};

39

40 val max_point_trusted: int{A ⊓ B ⊓ C} =

41 endorse max_point_public from {A ⊓ B ⊓ C->};

42

43 val in_interval: bool{C ∧ (A∧B)<-} =

44 min_point_trusted <= chuck_point ∧ chuck_point <= max_point_trusted;

45

46 // Chuck doesn 't need to trust this because

47 // it will not be part of his output

48 val in_interval_public: bool{A ⊓ B ⊓ C->} =

49 declassify in_interval to {A ⊓ B ⊓ C};

50

51 output in_interval_public to alice;

52 output in_interval_public to bob;

B.4 k-means clustering
This benchmark runs a k-means clustering algorithm over Alice and Bob’s private data points. The compiled implementation
executes the algorithm in an MPC protocol (Lines 25–79). After the algorithm finishes, the coordinates of the cluster centroids
are declassified to both participants (Lines 82–86).

1 host alice : {A ∧ B<-}

2 host bob : {B ∧ A<-}

3

4 val a_len: int{A ⊓ B} = 50;

5 val b_len: int{A ⊓ B} = 50;

6 val len: int{A ⊓ B} = a_len + b_len;

7 val dim: int{A ⊓ B} = 2;

8 val num_clusters: int{A ⊓ B} = 4;

9 val num_iter: int{A ⊓ B} = 3;

10

11 val data = Array[int]{A ∧ B}(len * dim);

12

13 // load data

14 for (var i: int{A ⊓ B} = 0; i < a_len * dim; i += 1) {

15 data[i] = input int from alice;

16 }

24

Viaduct

17

18 for (var i: int{A ⊓ B} = 0; i < b_len * dim; i += 1) {

19 data[(a_len*dim) + i] = input int from bob;

20 }

21

22 val clusters = Array[int]{A ∧ B}(num_clusters * dim);

23

24 // initialize by picking data points as centroids in a stride

25 val stride: int{A ⊓ B} = len / num_clusters;

26 for (var c: int{A ⊓ B} = 0; c < num_clusters; c += 1) {

27 for (var d: int{A ⊓ B} = 0; d < dim; d += 1) {

28 clusters [(c*dim)+d] = data[(stride*c*dim)+d];

29 }

30 }

31

32 for (var iter: int{A ⊓ B} = 0; iter < num_iter; iter += 1) {

33 // assign points to clusters

34 val best_clusters = Array[int]{A ∧ B}(len);

35 for (var i: int = 0; i < len; i += 1) {

36

37 // initialize to first cluster

38 var best_dist: int{A ∧ B} = 0;

39 var best_cluster: int{A ∧ B} = 0;

40 for (var d: int{A ⊓ B} = 0; d < dim; d += 1) {

41 val sub: int{A ∧ B} = data[(i*dim)+d] - clusters[d];

42 best_dist += sub * sub;

43 }

44

45 for (var c: int{A ⊓ B} = 1; c < num_clusters; c += 1) {

46 var dist: int{A ∧ B} = 0;

47 for (var d: int{A ⊓ B}; d < dim; d += 1) {

48 val sub: int{A ∧ B} = data[(i*dim)+d] - clusters [(c*dim)+d];

49 dist += sub * sub;

50 }

51

52 best_cluster = dist < best_dist ? c : best_cluster;

53 }

54

55 best_clusters[i] = best_cluster;

56 }

57

58 // update cluster centroids

59 for (var c: int{A ⊓ B} = 0; c < num_clusters; c += 1) {

60 val new_centroid_sum = Array[int]{A ∧ B}(dim);

61 var num_points: int{A ∧ B} = 0;

62 for (var i: int = 0; i < len; i += 1) {

63 val in_cluster: bool{A ∧ B} = best_clusters[i] == c;

64

65 for (var d: int{A ⊓ B} = 0; d < dim; d += 1) {

66 new_centroid_sum[d] += in_cluster ? data[(i*dim)+d] : 0;

67 }

68

69 if (in_cluster) {

70 num_points += 1;

25

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi

71 }

72 }

73

74 for (var d: int{A ⊓ B} = 0; d < dim; d += 1) {

75 clusters [(c*dim)+d] = num_points > 0 ?

76 (new_centroid_sum[d] / num_points) : clusters [(c*dim)+d]);

77 }

78 }

79 }

80

81 // declassify clusters

82 for (var h: int{A ⊓ B} = 0; h < num_clusters * dim; h += 1) {

83 val public_cluster: int{A ⊓ B} = declassify clusters[h] to {A ⊓ B};

84 output public_cluster to alice;

85 output public_cluster to bob;

86 }

The program is compiled to one semantically equivalent to the Kotlin program below that uses ABY directly.

1 fun kmeans(host: Host , aby: ABYParty , builder: ABYCircuitBuilder) {

2 val a_len = 50

3 val b_len = 50

4 val len = a_len + b_len

5 val dim = 2

6 val num_clusters = 4

7 val num_iterations = 3

8

9 // YaoABY

10 val data = Array <Share?>(len * dim) { null }

11

12 when (host) {

13 'alice ' => {

14 var i = 0

15 while (i < a_len * dim) {

16 val x = input.nextInt ()

17 data[i] = builder.yaoCircuit.putINGate(x.toBigInteger (), BITLEN , builder.role)

18 i += 1

19 }

20

21 var i_1 = 0

22 while (i_1 < b_len * dim) {

23 data[(a_len * dim) + i_1] = builder.yaoCircuit.putDummyINGate(BITLEN)

24 i_1 += 1

25 }

26 }

27

28 'bob ' => {

29 var i = 0

30 while (i < a_len * dim) {

31 data[i] = builder.yaoCircuit.putDummyINGate(BITLEN)

32 i += 1

33 }

34

35 var i_1 = 0

36 while (i_1 < b_len * dim) {

26

Viaduct

37 val x = input.nextInt ()

38 data[(a_len * dim) + i_1] =

39 builder.yaoCircuit.putINGate(x.toBigInteger (), BITLEN , builder.role)

40 i_1 += 1

41 }

42 }

43

44 else => throw Error('unknown host ')

45 }

46

47 // ArithABY

48 val clusters = Array <Share?>(num_clusters * dim) { null }

49 val stride = len / num_clusters

50

51 var c = 0

52 while (c < num_clusters) {

53 var d = 0

54 while (d < dim) {

55 clusters [(c * dim) + d] =

56 builder.arithCircuit.putY2AGate(data[(stride * c * dim) + d], builder.boolCircuit)

57 d += 1

58 }

59 c += 1

60 }

61

62 var iter = 0

63 while (iter < num_iterations) {

64 // YaoABY

65 val best_clusters = Array <Share?>(len) { null }

66

67 // assignment phase

68 var i = 0

69 while (i < len) {

70 var best_dist = builder.arithCircuit.putCONSGate (0. toBigInteger (), BITLEN)

71 var best_cluster = builder.yaoCircuit.putCONSGate (0. toBigInteger (), BITLEN)

72

73 // initialize point to first cluster

74 var d = 0

75 while (d < dim) {

76 val tmp62 =

77 builder.arithCircuit.putB2AGate(

78 builder.boolCircuit.putY2BGate(data[(i * dim) + d])

79)

80 val sub = builder.arithCircuit.putSUBGate(tmp62 , clusters[d])

81 val tmp68 = builder.arithCircuit.putMULGate(sub , sub)

82 best_dist = builder.arithCircuit.putADDGate(best_dist , tmp68)

83

84 d += 1

85 }

86

87 // assign point to nearest cluster

88 var c2 = 1

89 while (c2 < num_clusters) {

90 var dist = builder.arithCircuit.putCONSGate (0. toBigInteger (), BITLEN)

27

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi

91 var d2 = 0

92 while (d2 < dim) {

93 val tmp80 =

94 builder.arithCircuit.putB2AGate(

95 builder.boolCircuit.putY2BGate(data[(i * dim) + d2])

96)

97 val sub = builder.arithCircuit.putSUBGate(tmp80 , clusters [(c2 * dim) + d2])

98 val tmp90 = builder.arithCircuit.putMULGate(sub , sub)

99 dist = builder.arithCircuit.putADDGate(dist , tmp90)

100 d2 += 1

101 }

102

103 val tmp91 = builder.yaoCircuit.putA2YGate(dist)

104 val tmp92 = builder.yaoCircuit.putA2YGate(best_dist)

105 val tmp93 = builder.yaoCircuit.putGTGate(tmp92 , tmp91)

106 val tmp94 = builder.yaoCircuit.putCONSGate(c2.toBigInteger (), BITLEN)

107 val tmp96 = builder.yaoCircuit.putMUXGate(tmp94 , best_cluster , tmp93)

108 best_cluster = tmp96

109 c2 += 1

110 }

111

112 best_clusters[i] = best_cluster

113 i += 1

114 }

115

116 // update phase

117 var c3 = 0

118 while (c3 < num_clusters) {

119 // YaoABY

120 val new_centroid_sum = Array <Share?>(dim) {

121 builder.yaoCircuit.putCONSGate (0. toBigInteger (), BITLEN)

122 }

123 var num_points = builder.yaoCircuit.putCONSGate (0. toBigInteger (), BITLEN)

124 var i2 = 0

125 while (i2 < len) {

126 val tmp108 = builder.yaoCircuit.putCONSGate(c3.toBigInteger (), BITLEN)

127 val in_cluster = builder.yaoCircuit.putEQGate(best_clusters[i2], tmp108)

128 var d3 = 0

129 while (d3 < dim) {

130 val tmp121 =

131 builder.yaoCircuit.putMUXGate(

132 data[(i2 * dim) + d3],

133 builder.yaoCircuit.putCONSGate (0. toBigInteger (), BITLEN),

134 in_cluster

135)

136

137 new_centroid_sum[d3] = builder.yaoCircuit.putADDGate(new_centroid_sum[d3], tmp121)

138 d3 += 1

139 }

140

141 val op =

142 builder.yaoCircuit.putADDGate(

143 num_points ,

144 builder.yaoCircuit.putCONSGate (1. toBigInteger (), BITLEN)

28

Viaduct

145)

146 val mux = builder.yaoCircuit.putMUXGate(op, num_points , in_cluster)

147 num_points = mux

148 i2 += 1

149 }

150

151 var d4 = 0

152 while (d4 < dim) {

153 val tmp132 =

154 builder.yaoCircuit.putGTGate(

155 num_points ,

156 builder.yaoCircuit.putCONSGate (0. toBigInteger (), BITLEN)

157)

158

159 val tmp136 =

160 Aby.putInt32DIVGate(builder.yaoCircuit , num_points , new_centroid_sum[d4])

161

162 val tmp142 =

163 builder.yaoCircuit.putA2YGate(clusters [(c3 * dim) + d4])

164

165 clusters [(c3 * dim) + d4] =

166 builder.arithCircuit.putB2AGate(

167 builder.boolCircuit.putY2BGate(

168 builder.yaoCircuit.putMUXGate(tmp136 , tmp142 , tmp132)

169)

170)

171

172 d4 += 1

173 }

174

175 c3 += 1

176 }

177

178 iter += 1

179 }

180

181 var h = 0

182 var out_gates = Array <Share?>(num_clusters * dim) {

183 builder.arithCircuit.putCONSGate (0. toBigInteger (), BITLEN)

184 }

185 while (h < num_clusters * dim) {

186 out_gates[h] = builder.arithCircuit.putOUTGate(clusters[h], Role.ALL)

187 h += 1

188 }

189

190 aby.execCircuit ()

191

192 var i = 0

193 while (i < num_clusters * dim) {

194 println(out_gates[i]!!. clearValue32.toInt())

195 i += 1

196 }

197 }

29

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi

B.5 Rock–Paper–Scissors
Alice and Bob play a game of rock–paper–scissors.

In the compiled implementation, Alice and Bob input their moves ahead of time and send each other commitments to their
moves (Lines 10–13). Then the turns of the game are played by opening the commitments to Alice and Bob’s moves for that
turn and awarding the winning player a point (Lines 19–53). If a player’s input is invalid, the other player is awarded a point.
At the end of the game, the winner is determined and sent as output to the players (Lines 56–58).

1 host alice : {A}

2 host bob : {B}

3

4 val num_turns: int{A ⊓ B} = 3;

5 var a_score: int{A ⊓ B} = 0;

6 var b_score: int{A ⊓ B} = 0;

7 val a_moves = Array[int]{A ∧ B<-}(num_turns);

8 val b_moves = Array[int]{B ∧ A<-}(num_turns);

9

10 for (var i: int{A ⊓ B} = 0; i < num_turns; i += 1) {

11 a_moves[i] = endorse (input int from alice) from {A};

12 b_moves[i] = endorse (input int from bob) from {B};

13 }

14

15 for (var turn: int{A ⊓ B} = 0; turn < num_turns; turn += 1) {

16 val a_move: int{A ∧ B<-} = a_moves[turn];

17 val b_move: int{B ∧ A<-} = b_moves[turn];

18

19 val a_move_public: int{A ⊓ B} = declassify a_move to {A ⊓ B};

20 val b_move_public: int{A ⊓ B} = declassify b_move to {A ⊓ B};

21

22 // 1 = rock; 2 = paper; 3 = scissors;

23 val a_valid: bool{A ⊓ B} = 1 <= a_move_public ∧ a_move_public <= 3;

24 val b_valid: bool{A ⊓ B} = 1 <= b_move_public ∧ b_move_public <= 3;

25

26 // alice cheats

27 if (! a_valid ∧ b_valid) {

28 b_score += 1;

29 }

30

31 // bob cheats

32 if (a_valid ∧ !b_valid) {

33 a_score += 1;

34 }

35

36 // neither cheat

37 if (a_valid ∧ b_valid) {

38 if (a_move_public < b_move_public ∧ b_move_public < 3) {

39 b_score += 1;

40 }

41

42 if (b_move_public < a_move_public ∧ a_move_public < 3) {

43 a_score += 1;

44 }

45

46 if (a_move_public == 1 ∧ b_move_public == 3) {

47 a_score += 1;

30

Viaduct

48 }

49

50 if (b_move_public == 1 ∧ a_move_public == 3) {

51 b_score += 1;

52 }

53 }

54 }

55

56 val a_wins: bool{A ⊓ B} = a_score > b_score;

57 output a_wins to alice;

58 output a_wins to bob;

B.6 Two-Round Bidding
Alice and Bob participate in auctions for n items. The auction occurs in two rounds. First, Alice and Bob place bids on each
item. The first-round winner for each item is then revealed. Next, Alice and Bob place a second bid on each item. The overall
winner for an item is the person who places the highest average bid between the two rounds.

To prevent leaking the actual values of their bids, which is supposed to be kept private, Alice and Bob execute an MPC
protocol to perform the comparisons between their bids (line 18 and line 33). The rest of the program can be executed in
cleartext.

1 host alice: {A ∧ B<-}

2 host bob: {B ∧ A<-}

3

4 val n: int{A ⊓ B} = 500; // number of items to bid

5 val abids1 = Array[int]{A ∧ B<-}(n);

6 val abids2 = Array[int]{A ∧ B<-}(n);

7 val bbids1 = Array[int]{B ∧ A<-}(n);

8 val bbids2 = Array[int]{B ∧ A<-}(n);

9

10 // round 1

11 for (var i: int{A ⊓ B} = 0; i < n; i += 1) {

12 abids1[i] = input int from alice;

13 bbids1[i] = input int from bob;

14 }

15

16 // reveal first -round winners

17 for (var i: int{A ⊓ B} = 0; i < n; i += 1) {

18 val winner: bool = declassify abids1[i] < bbids1[i] to {A ⊓ B};

19 output winner to alice;

20 output winner to bob;

21 }

22

23 // round 2

24 for (var i: int{A ⊓ B} = 0; i < n; i += 1) {

25 abids2[i] = input int from alice;

26 bbids2[i] = input int from bob;

27 }

28

29 // reveal overall winners

30 for (var i: int{A ⊓ B} = 0; i < n; i += 1) {

31 val abid: int{A ∧ B<-} = (abids1[i] + abids2[i]) / 2;

32 val bbid: int{B ∧ A<-} = (bbids1[i] + bbids2[i]) / 2;

33 val winner: bool{A ⊓ B} = declassify abid < bbid to {A ⊓ B};

34 output winner to alice;

31

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi

35 output winner to bob;

36 }

The program is compiled to one semantically equivalent to the Kotlin program below that uses ABY directly.

1 fun twoRoundBidding(host: Host , aby: ABYParty , builder: ABYCircuitBuilder) {

2 val n = 500

3 when (host) {

4 'alice ' => {

5 val abids1 = Array <Int >(n) { 0 }

6 val abids2 = Array <Int >(n) { 0 }

7

8 var i = 0

9 while (i < n) {

10 abids1[i] = input.nextInt ()

11 i += 1

12 }

13

14 var i_1 = 0

15 while (i_1 < n) {

16 val tmp15 =

17 builder.yaoCircuit.putINGate(

18 abids1[i_1]. toBigInteger (), BITLEN , builder.role

19)

20 val tmp17 = builder.yaoCircuit.putDummyINGate(BITLEN)

21 val tmp18 = builder.yaoCircuit.putGTGate(tmp17 , tmp15)

22 val tmp19 = builder.yaoCircuit.putOUTGate(tmp18 , Role.ALL)

23

24 aby.execCircuit ()

25

26 val winner = tmp19.clearValue32.toInt()

27

28 aby.reset()

29

30 println(winner)

31

32 i_1 += 1

33 }

34

35 var i_2 = 0

36 while (i_2 < n) {

37 abids1[i_2] = input.nextInt ()

38 i_2 += 1

39 }

40

41 var i_3 = 0

42 while (i_3 < n) {

43 val abid =

44 builder.yaoCircuit.putINGate(

45 ((abids1[i_3] + abids2[i_3]) / 2).toBigInteger (),

46 BITLEN ,

47 builder.role

48)

49 val bbid = builder.yaoCircuit.putDummyINGate(BITLEN)

50 val tmp46 = builder.yaoCircuit.putGTGate(bbid , abid)

32

Viaduct

51 val tmp47 = builder.yaoCircuit.putOUTGate(tmp46 , Role.ALL)

52

53 aby.execCircuit ()

54

55 val winner_1 = tmp47.clearValue32.toInt()

56

57 aby.reset()

58

59 println(winner_1)

60

61 i_3 += 1

62 }

63 }

64

65 'bob ' => {

66 val bbids1 = Array <Int >(n) { 0 }

67 val bbids2 = Array <Int >(n) { 0 }

68

69 var i = 0

70 while (i < n) {

71 bbids1[i] = input.nextInt ()

72 i += 1

73 }

74

75 var i_1 = 0

76 while (i_1 < n) {

77 val tmp15 = builder.yaoCircuit.putDummyINGate(BITLEN)

78 val tmp17 =

79 builder.yaoCircuit.putINGate(

80 bbids1[i_1]. toBigInteger (), BITLEN , builder.role

81)

82 val tmp18 = builder.yaoCircuit.putGTGate(tmp17 , tmp15)

83 val tmp19 = builder.yaoCircuit.putOUTGate(tmp18 , Role.ALL)

84

85 aby.execCircuit ()

86

87 val winner = tmp19.clearValue32.toInt()

88

89 aby.reset()

90

91 println(winner)

92

93 i_1 += 1

94 }

95

96 var i_2 = 0

97 while (i_2 < n) {

98 bbids1[i_2] = input.nextInt ()

99 i_2 += 1

100 }

101

102 var i_3 = 0

103 while (i_3 < n) {

104 val abid = builder.yaoCircuit.putDummyINGate(BITLEN)

33

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi

105 val bbid =

106 builder.yaoCircuit.putINGate ((

107 (bbids1[i_3] + bbids2[i_3]) / 2).toBigInteger (),

108 BITLEN ,

109 builder.role

110)

111 val tmp46 = builder.yaoCircuit.putGTGate(bbid , abid)

112 val tmp47 = builder.yaoCircuit.putOUTGate(tmp46 , Role.ALL)

113

114 aby.execCircuit ()

115

116 val winner_1 = tmp47.clearValue32.toInt()

117

118 aby.reset()

119

120 println(winner_1)

121

122 i_3 += 1

123 }

124 }

125

126 else => throw ViaductInterpreterError('unknown host ')

127 }

128 }

34

	Abstract
	1 Introduction
	2 Overview of Viaduct
	2.1 Specifying Security Policies
	2.2 Threat Model
	2.3 Label Inference
	2.4 Protocol Selection
	2.5 Runtime

	3 Source Language
	3.1 Label Checking
	3.2 Label Inference

	4 Protocol Selection
	4.1 Validity of Protocol Assignments
	4.2 Cost of Protocol Assignments
	4.3 Computing an Optimal Protocol Assignment

	5 Viaduct Runtime
	5.1 Protocol Composition

	6 Implementation
	7 Evaluation
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Termination and Optimality of the Label Inference Algorithm
	A.1 Constructing the Operator
	A.2 Termination and Optimality

	B Selected benchmarks
	B.1 Battleship
	B.2 Biometric Matching
	B.3 Interval
	B.4 k-means clustering
	B.5 Rock–Paper–Scissors
	B.6 Two-Round Bidding

