
Predicate Privacy in Encryption Systems

Emily Shen
MIT

eshen@csail.mit.edu

Elaine Shi
CMU/PARC

eshi@parc.com

Brent Waters∗

UT Austin
bwaters@cs.utexas.edu

December 24, 2008

Abstract

Predicate encryption is a new encryption paradigm which gives a master secret key owner
fine-grained control over access to encrypted data. The master secret key owner can generate
secret key tokens corresponding to predicates. An encryption of data x can be evaluated using
a secret token corresponding to a predicate f ; the user learns whether the data satisfies the
predicate, i.e., whether f(x) = 1.

Prior work on public-key predicate encryption has focused on the notion of data or plaintext
privacy, the property that ciphertexts reveal no information about the encrypted data to an
attacker other than what is inherently revealed by the tokens the attacker possesses. In this
paper, we consider a new notion called predicate privacy, the property that tokens reveal no
information about the encoded query predicate. Predicate privacy is inherently impossible to
achieve in the public-key setting and has therefore received little attention in prior work. In this
work, we consider predicate encryption in the symmetric-key setting and present a symmetric-
key predicate encryption scheme which supports inner product queries. We prove that our
scheme achieves both plaintext privacy and predicate privacy.

1 Introduction

In traditional public-key encryption, a user encrypts a message under a public key, and only the
owner of the corresponding secret key can decrypt the ciphertext. In some applications, however,
the user may wish to have more fine-grained control over what is revealed about the encrypted
data. For example, in a medical context an administrative assistant might only be able to learn
whether an encrypted record was generated at a certain clinic. Predicate encryption is a new
encryption paradigm which allows for such fine-grained control over access to encrypted data. In
a predicate encryption scheme, the owner of a master secret key can create and issue secret key
tokens to other users. Tokens are associated with predicates which can be evaluated over encrypted
data. Specifically, an encryption of a data x can be evaluated using a token TKf associated with
a predicate f to learn whether f(x) = 1.

Prior work on public-key predicate encryption [7, 12, 1, 9, 19, 11, 28, 27] has focused on the
security property that ciphertexts reveal no information about the underlying plaintext or data
other than what is implied by the tokens in one’s possession. More specifically, an adversary

∗Supported by NSF CNS-0524252, CNS-0716199; the U.S. Department of Homeland Security under Grant Award
Number 2006-CS-001-000001.

1

in possession of tokens TKf1
, . . . , TKfℓ

for predicates f1, . . . , fℓ learns no information about the
underlying plaintext x other than the values of f1(x), . . . , fℓ(x)1. We refer to the above property
as plaintext or data privacy.

In this work, we consider a different dimension of predicate encryption – predicate privacy. In
addition to protecting the privacy of plaintexts, we would like to protect the description of the
predicates encoded by tokens. Informally, predicate privacy says that a token hides all information
about the encoded predicate other than what is implied by the ciphertexts in one’s possession.
Unfortunately, predicate privacy is inherently impossible to achieve in the public-key setting. Since
encryption does not require a secret key, an adversary can encrypt any plaintext of his choice and
evaluate a token on the resulting ciphertext to learn whether the plaintext satisfies the predicate
associated with the token. In this way, an adversary can gain information about the predicate
encoded in a token. Therefore, it does not make sense to consider the notion of predicate privacy
for predicate encryption in the public-key setting.

However, it is interesting to consider predicate privacy in the symmetric-key setting, in applica-
tions where we want to hide information about the predicate being tested from the party evaluating
a token. For example, suppose a user Alice uses a remote storage service to back up her files. Alice
wishes to protect the privacy of her files by encrypting them using her secret key before sending
them to the server. (Only Alice possesses her secret key.) Later on, Alice may wish to retrieve all
files satisfying a certain predicate. To do this, Alice can create a token (using her secret key) for
this predicate and issue the token to the server. The server can then evaluate the predicate on the
encrypted files and return those files which satisfy the predicate. We want to guarantee that the
server learns nothing about the predicate it evaluates on Alice’s behalf.

1.1 Our Results

In this paper, we present formal definitions of security for predicate encryption in the symmetric-
key setting, for general classes of predicates. We present a symmetric-key predicate encryption
scheme that achieves both plaintext privacy and predicate privacy. Our construction supports the
class of predicates corresponding to the evaluation of inner products. We take the set of plaintexts
to be Σ = Z

n
N and the class of predicates to be F = {f~v|~v ∈ Z

n
N} where f~v(~x) = 1 iff 〈~v, ~x〉 = 0,

where 〈~v, ~x〉 denotes the inner product
∑n

i=1 vi · xi mod N of vectors ~v and ~x. Our construction is
based on the KSW construction [21], which uses bilinear groups whose order is the product of three
primes. Our construction uses groups whose order is the product of four primes. Our complexity
assumptions have all been introduced in prior work but for the case of groups whose order is the
product of fewer than four primes.

Why Inner Product Queries? An important goal in predicate encryption is to support com-
plex, expressive queries. Prior work has focused on achieving more expressive schemes, with the
most expressive scheme to date being that of Katz, Sahai and Waters [21]. The KSW scheme
supports inner product queries, which are strictly more expressive than conjunctive queries and,
as shown in [21], imply conjunctions, disjunctions, CNF/DNF formulas, polynomial evaluation,
and exact thresholds. Therefore, our goal in this work is to construct a symmetric-key predicate
encryption scheme that supports inner product queries.

1In some works the authors also distinguish an extra “payload message” M such that in the case that one of
f1(x), . . . , fℓ(x) evaluates to 1, the adversary learns the payload message M . In our work we solely consider the
predicate encryption system property where the evaluation reveals f(x).

2

1.2 Related Work

Public-Key Predicate Encryption. The earliest examples of public-key predicate encryption
are anonymous identity-based encryption (A-IBE) schemes with keyword search (which corresponds
to an equality predicate) [7, 12, 1, 9]. Since then, more expressive schemes such as those supporting
conjunctive queries [19, 11, 28] and multi-dimensional range queries [27] have been proposed. The
most expressive scheme known to date is due to Katz, Sahai and Waters [21] and supports inner-
product queries. As explained above, the KSW scheme is strictly more expressive than previously
proposed predicate encryption schemes.

Searchable Encrypted Databases. A related line of research is secure searching on outsourced
encrypted databases. The problem was considered by Goldreich and Ostrovsky [22, 18] when cast
as a problem of oblivious RAM, and they provided general solutions. Song, Wagner, and Perrig [29]
later gave more efficient solutions for equality searches, but made a tradeoff of letting a storage
server learn the access pattern of a user. Curtmola et al. [17] considered stronger security definitions
in a similar setting. While we do not directly address searchable encrypted databases in this work,
our predicate encryption solution allows for more complex queries to be made in this particular
application.

Identity-Based Encryption and Attribute-Based Encryption. Identity-based encryption
(IBE) [26, 8, 16] can be viewed as a special, more limited, case of predicate encryption for the class
of equality tests. In attribute-based encryption (ABE) [25, 20, 3, 24, 15, 23], a user can receive a
capability representing an access control policy over the attributes of an encrypted record.

In both IBE and ABE schemes, the identity or attributes are not hidden in the ciphertext. In
fact, access to the encrypted data itself is inherently “all-or-nothing.” The important distinction
between these systems and the ones we consider is that they only hide a “payload message” M . In
particular, the ciphertext is associated with a payload message M and some extra structure x (e.g.,
the “identity” or set of attributes associated with the ciphertext). The security guarantee of these
systems is that M remains hidden as along as the attacker does not have a secret key associated
with a predicate function f such that f(x) = 1; however, there is no guarantee about hiding the
structure of x, which in general might be leaked to the attacker. One advantage, however, is that
this relaxation might allow for more expressive access predicates.

2 Definitions

In this section, we formally define symmetric-key predicate encryption and its security. For sim-
plicity, we consider the predicate-only variant, in which evaluating a token on a ciphertext outputs
a bit indicating whether the encrypted plaintext satisfies the predicate corresponding to the token.
We note that a predicate-only scheme can easily be extended to obtain a full-fledged predicate
encryption scheme, in which evaluating a token on a ciphertext outputs the encrypted plaintext if
the plaintext satisfies the predicate corresponding to the token, using techniques from prior work
such as [11, 27, 21].

We give definitions for the general case of an arbitrary set of plaintexts Σ and an arbitrary
set of predicates F . Our construction in Section 4 will be for the specific case of Σ = Z

n
N and

3

F = {f~v|~v ∈ Z
n
N} with f~x(~v) = 1 iff 〈~x,~v〉 = 0 mod N , where 〈~x,~v〉 denotes the inner product∑n

i=1 xi · vi mod N of vectors ~x and ~v. We follow the notation of [21].

2.1 Symmetric-Key Predicate-Only Encryption

Let Σ denote a finite set of plaintexts, and let F denote a finite set of predicates f : Σ → {0, 1}.
We say that x ∈ Σ satisfies a predicate f if f(x) = 1.

Definition 2.1 (Symmetric-Key Predicate-Only Encryption Scheme). A symmetric-key predicate-
only encryption scheme for the class of predicates F over the set of attributes Σ consists of the
following probabilistic polynomial time (PPT) algorithms.

Setup(1λ): Takes as input a security parameter 1λ and outputs a secret key SK.

Encrypt(SK, x): Takes as input a secret key SK and a plaintext x ∈ Σ and outputs a ciphertext
CT .

GenToken(SK, f): Takes as input a secret key SK and a description of a predicate f ∈ F and
outputs a token TKf .

Query(TKf , CT): Takes as input a token TKf for a predicate f and a ciphertext CT . It outputs
either 0 or 1, indicating the value of the predicate f evaluated on the underlying plaintext.

Correctness. For correctness, we require the following condition. For all λ, all x ∈ Σ, and all
f ∈ F , letting SK ← Setup(1λ), TKf ← GenToken(SK, f), and CT ← Encrypt(SK, x),

• If f(x) = 1, then Query(TKf , CT) = 1.

• If f(x) = 0, then Pr[Query(TKf , CT) = 0] > 1− ǫ(λ) where ǫ is a negligible function.

2.2 Security Definitions

We now give formal definitions of security for a symmetric-key predicate-only encryption scheme.
We first define full security, which, roughly speaking, says that given a set of tokens for predicates
f1, . . . , fk and a set of encryptions of plaintexts x1, . . . , xℓ, an adversary A gains no information
about any of the predicates f1, . . . , fk or the plaintexts x1, . . . , xℓ (other than the value of each of
the predicates evaluated on each of the plaintexts).

However, the full security notion turns out to be difficult to work with in our proofs of security.
Therefore, we introduce a second security notion called single challenge security, which resembles
the security notions used in previous work such as [11, 21]. As we show later, full security implies
single challenge security, and, for the specific case of inner product predicates, single challenge
security implies full security in the sense that, given a single challenge secure scheme for inner
product predicates over Σ = Z

2n
N , we can construct a fully secure scheme for inner product predicates

over Σ = Z
n
N . Therefore, for our construction it suffices to consider the single challenge security

definition. To prove the security of our construction, we will use the selective relaxation of single
challenge security. The notion of selective security was first introduced by [13] and has been used
widely in the literature [13, 14, 5, 11, 12, 27].

4

2.2.1 Full Security

We define full security of a symmetric-key predicate-only encryption scheme using the following
game between an adversary A and a challenger.

Setup: The challenger runs Setup(1λ) and keeps SK to itself. The challenger picks a random bit
b.

Queries: A adaptively issues queries, where each query is of one of two types:

• Ciphertext query. On the jth ciphertext query, A outputs a bit t = 0 (indicating
a ciphertext query) and two plaintexts xj,0, xj,1 ∈ Σ. The challenger responds with
Encrypt(SK, xj,b).

• Token query. On the ith token query, A outputs a bit t = 1 (indicating a token
query) and descriptions of two predicates fi,0, fi,1 ∈ F . The challenger responds with
GenToken(SK, fi,b).

A’s queries are subject to the restriction that, for all ciphertext queries (xj,0, xj,1) and all
predicate queries (fi,0, fi,1), fi,0(xj,0) = fi,1(xj,1).

Guess: A outputs a guess b′ of b.

The advantage of A is defined as AdvA =
∣∣Pr[b′ = b]− 1

2

∣∣.

Definition 2.2 (Full Security). A symmetric-key predicate-only encryption scheme is fully secure
if, for all PPT adversaries A, the advantage of A in winning the above game is negligible in λ.

2.2.2 Single Challenge Security

In order to prove the security of our construction, we will need to introduce a second security
definition, which we refer to as single challenge security. Whereas in the full security game, each
of the adversary’s queries is considered part of the challenge, in the single challenge security game,
the challenge consists of only one pair of plaintexts or predicates. The single challenge security
game resembles security games used previously in the IBE and predicate encryption literature. The
game proceeds as follows.

Setup: The challenger runs Setup(1λ) and keeps SK to itself.

Query Phase 1: A adaptively issues queries, where each query is of one of two types:

• Ciphertext query. On the jth ciphertext query, A outputs a bit t = 0 (indicating a
ciphertext query) and a plaintext xj. The challenger responds with Encrypt(SK, xj).

• Token query. On the jth token query, A outputs a bit t = 1 (indicating a token query)
and a description of a predicate fj. The challenger responds with GenToken(SK, fj).

Challenge: A outputs a request for one of the following:

• Ciphertext challenge. A outputs a bit t = 0 (indicating a ciphertext challenge) and two
plaintexts x∗

0 and x∗
1 such that, for all previous token queries fj, fj(x

∗
0) = fj(x

∗
1). The

challenger picks a random bit b and responds with Encrypt(SK, x∗
b
).

5

• Token challenge. A outputs a bit t = 1 (indicating a token challenge) and descriptions
of two predicates f∗

0 and f∗
1 such that, for all previous ciphertext queries xj, f∗

0 (xj) =
f∗
1 (xj). The challenger picks a random bit b and responds with GenToken(SK, f∗

b
).

Query Phase 2: A adaptively issues additional queries as in Query Phase 1, subject to the same
restriction with respect to the challenge as above.

Guess: A outputs a guess b′ of b.

The advantage of A is defined as AdvA =
∣∣Pr[b′ = b]− 1

2

∣∣.
Definition 2.3 (Single Challenge Security). A symmetric-key predicate-only encryption scheme
is single challenge secure if, for all PPT adversaries A, the advantage of A in winning the above
game is negligible in λ.

Selective Single Challenge Security. We will need to use the selective variant of single chal-
lenge security, defined below. The notion of selective security was first introduced by [13] and has
been used previously by [13, 14, 5, 11, 12, 27].

Definition 2.4 (Selective Single Challenge Security). In the selective single challenge security
game, the adversary A outputs the challenge strings at the start of the game during an Init phase
(instead of during a Challenge phase). The rest of the game proceeds in the same way as in the
single challenge security game. We say that a symmetric-key predicate-only encryption scheme is
selective single challenge secure if, for all PPT adversaries A, the advantage of A in winning the
selective single challenge game is negligible in λ.

For our proofs of security, it will be useful to define separate notions of plaintext privacy and
predicate privacy, which correspond to a ciphertext challenge and a token challenge, respectively,
in the selective single challenge security game.

Definition 2.5 (Plaintext Privacy). A symmetric-key predicate-only encryption scheme has se-
lective single challenge plaintext privacy (plaintext privacy, for short) if, for all PPT adversaries
A, the advantage of A in winning the selective single challenge game for a ciphertext challenge is
negligible in λ.

Definition 2.6 (Predicate Privacy). A symmetric-key predicate-only encryption scheme has selec-
tive single challenge predicate privacy (predicate privacy, for short) if, for all PPT adversaries A,
the advantage of A in winning the selective single challenge game for a token challenge is negligible
in λ.

We note that plaintext privacy and predicate privacy, together, are equivalent to selective single
challenge security.

2.2.3 Relationship Between Single Challenge Security and Full Security

It is useful to consider the relationship between the security definitions introduced above. The
full security notion implies single challenge security. For the specific case of inner product query
predicates, a single challenge secure scheme for vectors of length 2n can be used to construct a
fully secure scheme for vectors of length n. Therefore, we consider single challenge security to be a
sufficiently strong notion of security for our construction.

These relationships are stated formally in the following theorems.

6

Theorem 2.7. If a symmetric-key predicate-only encryption scheme is fully secure, then it is single
challenge secure.

Proof. Suppose an adversary A wins the single challenge security game with advantage ǫ. We can
define an adversary B that wins the full security game with advantage ǫ as follows. When A makes
a ciphertext query ~x, B in turn makes the ciphertext query (~x, ~x) to B’s challenger and responds to
A with the ciphertext it receives. Similarly, when A makes a token query ~v, B in turn makes the
token query (~v,~v) to B’s challenger and responds to A with the token it receives. When A issues
its challenge request, B outputs the challenge request as a query to its challenger and responds to
A with the answer it receives. B outputs the same guess b′ as A does. It is clear that all of B’s
responses to A are properly constructed, and B wins the full security game with the same advantage
ǫ with which A wins the single challenge security game.

Theorem 2.8. Let Scheme2n denote a single challenge secure symmetric-key predicate-only en-
cryption scheme for inner product queries, where plaintext and predicate vectors have length 2n.
Then Scheme2n can be used to construct a fully secure symmetric-key predicate-only encryption
scheme Schemen for inner product queries, where plaintext and predicate vectors have length n.

The proof of this theorem is deferred to Appendix B.

3 Background and Complexity Assumptions

Our symmetric-key predicate encryption scheme uses bilinear groups of composite order, first intro-
duced by [10]. While the public-key predicate encryption scheme of [21] uses bilinear groups whose
order is the product of three distinct primes, we use bilinear groups whose order is the product of
four distinct primes.

We briefly review some facts about bilinear groups and then state the assumptions we use to
prove security of our construction.

3.1 Bilinear Groups of Composite Order

Let G denote a group generator algorithm that takes as input a security parameter 1λ and outputs
a tuple (p, q, r, s, G, GT , e) where p, q, r, s are distinct primes, G and GT are two cyclic groups of
order N = pqrs, and e : G×G→ GT satisfies the following properties:

• (Bilinear) ∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab.

• (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .

We assume that group operations in G and GT as well as the bilinear map e can be computed in
time polynomial in λ.

We use the notation Gp, Gq, Gr, Gs to denote the subgroups of G having order p, q, r, s, respec-
tively.

We will use the following facts about bilinear groups of composite order. Although these facts
are stated in terms of Gp and Gq, similar facts hold in general for distinct subgroups of a composite
order bilinear group.

• Let ap ∈ Gp, bq ∈ Gq denote two elements from distinct subgroups. Then e(ap, bq) = 1.

7

• Let Gpq = Gp × Gq, a, b ∈ Gpq. a and b can be rewritten (uniquely) as a = apaq, b = bpbq,
where ap, bq ∈ Gp, and aq, bq ∈ Gq. Then e(a, b) = e(ap, bp)e(aq, bq).

3.2 Our Assumptions

The security of our symmetric-key predicate-only encryption scheme relies on three assumptions.
All of these assumptions have been introduced previously but in groups whose order is the product
of at most three distinct primes. Specifically, Assumption 1 involves 3 subgroups, C3DH involves 2
subgroups, and DL involves 1 subgroup. We assume that these assumptions hold when the relevant
subgroups are contained in a larger group whose order is the product of four distinct primes. Note
that the naming of subgroups is not significant in our assumptions; that is, the assumptions are
the same if the subgroups are renamed.

Assumption 1 We use Assumption 1 of KSW [21], which was used for bilinear groups whose
order is the product of three distinct primes. We restate the assumption in the context of a bilinear
group whose order is the product of four distinct primes.

Let G be a group generator algorithm as above. Run G(1λ) to obtain (p, q, r, s, G, GT , e). Let
N = pqrs and let gp, gq, gr, gs be random generators of Gp, Gq, Gr, Gs, respectively. Choose random
Q1, Q2, Q3 ∈ Gq, random R1, R2, R3 ∈ Gr, random a, b, c ∈ Zp, and a random bit b. If b = 0, let

T = gb2c
p R3; if b = 1, let T = gb2c

p Q3R3. Give the adversary A the description of the bilinear group,
(N, G, GT , e), along with the following values:

(
gp, gr, gs, gqR1, gb

p, gb2

p , ga
pgq, gab

p Q1, gc
p, gbc

p Q2R2, T
)

The adversaryA outputs a guess b′ of b. The advantage ofA is defined as AdvA =
∣∣Pr[b′ = b]− 1

2

∣∣.

Definition 3.1. We say that G satisfies Assumption 1 if, for all PPT algorithms A, the advantage
of A in winning the above game is negligible in the security parameter λ.

We note that Assumption 1 implies the hardness of finding a non-trivial factor of N .

Generalized 3-Party Diffie-Hellman Assumption (C3DH). We use the composite 3-party
Diffie-Hellman assumption first introduced by [11]. We restate the assumption in the context of a
bilinear group whose order is the product of four distinct primes.

Let G be a group generator algorithm as above. Run G(1λ) to obtain (p, q, r, s, G, GT , e). Let
N = pqrs and let gp, gq, gr, gs be random generators of Gp, Gq, Gr, Gs, respectively. Choose random
R1, R2, R3 ∈ Gr, random a, b, c ∈ ZN , and a random bit b. If b = 0, let T = gc

p · R3; if b = 1, let
T be a random element in Gpr = Gp × Gr. Give the adversary A the description of the bilinear
group, (N, G, GT , e), along with the following values:

(
gp, gq, gr, gs, ga

p , gb
p, gab

p ·R1, gabc
p ·R2, T

)

The adversary A outputs a guess b′ of b. The advantage of A is defined as AdvA =
∣∣Pr[b′ = b]− 1

2

∣∣.

Definition 3.2. We say that G satisfies the C3DH assumption if for all PPT algorithms A, the
advantage of A in winning the above game is negligible in the security parameter λ.

We note that the C3DH assumption implies the hardness of finding a non-trivial factor N .

8

Decisional Linear assumption (DLinear). We use the Decisional Linear assumption intro-
duced by [6]. We restate the assumption in the context of a bilinear group whose order is the
product of four distinct primes.

Let G be a group generator algorithm as above. Run G(1λ) to obtain (p, q, r, s, G, GT , e). Let
N = pqrs and let gp, gq, gr, gs be random generators of Gp, Gq, Gr, Gs, respectively. Choose random
z1, z2, z3, z4 ∈ Zp and a random bit b. If b = 0, let Z = gz3+z4

p ; if b = 1, let Z be a random element
in Gp. Give the adversary A the description of the bilinear group, (N, G, GT , e), along with the
following values:

(gp, gq, gr, gs, gz1

p , gz2

p , gz1z3

p , gz2z4

p , Z)

The adversary A outputs a guess b′ of b. The advantage of A is defined as AdvA =
∣∣Pr[b′ = b]− 1

2

∣∣.

Definition 3.3. We say that G satisfies the DLinear assumption if for all PPT algorithms A, the
advantage of A in winning the above game is negligible in the security parameter n.

4 Construction

Our goal is to construct a symmetric-key predicate encryption scheme supporting inner product
queries that has both plaintext privacy and predicate privacy. The KSW construction [21] is a
public-key predicate encryption scheme supporting inner product queries that has plaintext privacy.
A natural first attempt might be to convert the KSW scheme into a symmetric-key scheme simply
by withholding the public key. Such a scheme would immediately inherit plaintext privacy from
the KSW construction. However, it is difficult to prove the predicate privacy of such a scheme.
Our primary challenge is to achieve predicate privacy.

To achieve predicate privacy, we use the observation that, for inner product queries, ciphertexts
and tokens play symmetric roles in the scheme and the security definitions. In particular, a token
and a ciphertext each encode a vector in Z

n
N , and the inner product 〈~x,~v〉 is commutative. Further-

more, for inner products, ciphertexts and tokens have symmetric roles in the security definitions.
One way to interpret this observation is to view a ciphertext as an encryption of a plaintext vector
and a token as an encryption of a predicate vector.

Based on this observation, our general approach is to start from a construction that resembles
the KSW construction, so that we can prove plaintext privacy in a relatively straightforward man-
ner. We then show through a series of modifications to our construction that it is indistinguishable
from one in which ciphertexts and tokens are formed symmetrically. Using this symmetry, we can
leverage the plaintext privacy proven for our main construction to achieve predicate privacy as well.
Taken all together, the “native” formation of our system gives us plaintext privacy by a KSW type
of approach, and the indistinguishability of our construction from one in which ciphertexts and
tokens are symmetrically formed implies that our construction also has predicate privacy.

4.1 A Symmetric-Key Predicate Encryption Scheme

Our main construction is a symmetric-key predicate-only encryption scheme supporting inner prod-
uct queries. We take the class of plaintexts to be Σ = Z

n
N and the class of predicates to be

F = {f~v|~v ∈ Z
n
N} with f~x(~v) = 1 iff 〈~x,~v〉 = 0 mod N .

We now describe our construction in detail.

9

Setup(1λ): The setup algorithm runs G(1λ) to obtain (p, q, r, s, G, GT , e) with G = Gp × Gq ×
Gr × Gs. Next it picks generators gp, gq, gr, gs of Gp, Gq, Gr, Gs, respectively. It chooses
h1,i, h2,i, u1,i, u2,i ∈ Gp uniformly at random for i = 1 to n. The secret key is

SK =
(
gp, gq, gr, gs, {h1,i, h2,i, u1,i, u2,i}

n
i=1

)
.

Encrypt(SK, ~x): Let ~x = (x1, . . . , xn) ∈ Z
n
N . The encryption algorithm chooses random y, z, α, β ∈

ZN , random S, S0 ∈ Gs, and random R1,i, R2,i ∈ Gr for i = 1 to n. It outputs the ciphertext

CT =




C = S · gy
p , C0 = S0 · g

z
p ,

{
C1,i = hy

1,i · u
z
1,i · g

αxi
q ·R1,i, C2,i = hy

2,i · u
z
2,i · g

βxi
q · R2,i

}n

i=1


 .

GenToken(SK,~v): Let ~v = (v1, . . . , vn) ∈ Z
n
N . The token generation algorithm chooses random

f1, f2 ∈ ZN , random r1,i, r2,i ∈ ZN for i = 1 to n, random R,R0 ∈ Gr, and random S1,i, S2,i ∈
Gs for i = 1 to n. It outputs the token

TK~v =




K = R ·
∏n

i=1 h
−r1,i

1,i · h
−r2,i

2,i , K0 = R0 ·
∏n

i=1 u
−r1,i

1,i · u
−r2,i

2,i ,
{
K1,i = g

r1,i
p · gf1vi

q · S1,i, K2,i = g
r2,i
p · gf2vi

q · S2,i

}n

i=1


 .

Query(TK~v, CT) : Let CT = (C,C0, {C1,i, C2,i}
n
i=1) and

TK~v = (K,K0, {K1,i,K2,i}
n
i=1) as above. The query algorithm outputs 1 iff

e(C,K) · e(C0,K0) ·

n∏

i=1

e(C1,i,K1,i) · e(C2,i,K2,i)
?
= 1.

Correctness. Let CT and TK~v be as above. Then

e(C,K) · e(C0,K0) ·
n∏

i=1

e(C1,i,K1,i) · e(C2,i,K2,i)

= e(S · gy
p , R ·

n∏

i=1

h
−r1,i

1,i · h
−r2,i

2,i) · e(S0 · g
z
p, R0 ·

n∏

i=1

u
−r1,i

1,i · u
−r2,i

2,i)

·

n∏

i=1

e(hy
1,i · u

z
1,i · g

αxi
q ·R1,i, g

r1,i
p · gf1vi

q · S1,i)

·e(hy
2,i · u

z
2,i · g

βxi
q ·R2,i, g

r2,i
p · gf2vi

q · S2,i)

= e(gy
p ,

n∏

i=1

h
−r1,i

1,i · h
−r2,i

2,i) · e(gz
p ,

n∏

i=1

u
−r1,i

1,i · u
−r2,i

2,i)

·

n∏

i=1

e(hy
1,i · u

z
1,i · g

αxi
q , g

r1,i
p · gf1vi

q) · e(hy
2,i · u

z
2,i · g

βxi
q , g

r2,i
p · gf2vi

q)

=

n∏

i=1

e(gq , gq)
(αf1+βf2)xivi = e(gq, gq)

(αf1+βf2 mod q)〈~x,~v〉

10

If 〈~x,~v〉 = 0 mod N , then the above expression evaluates to 1. If 〈~x,~v〉 6= 0 mod N , then there
are two cases. If 〈~x,~v〉 = 0 mod q, then the above expression evaluates to 1; however, this case
would reveal a non-trivial factor of N and, therefore, this case occurs with negligible probability.
If 〈~x,~v〉 6= 0 mod q, then with all but negligible probability αf1 + βf2 6= 0 mod q and the above
expression does not evaluate to 1.

4.2 Discussion

To understand our construction, it is useful to examine the role of each of the subgroups Gp, Gq, Gr, Gs.
The Gq subgroup is used to encode the plaintext vector ~x in the C1,i and C2,i terms of the

ciphertext and the predicate vector ~v in the K1,i and K2,i terms of the token. When a token for
~v is applied to an encryption of ~x, the computation of the inner product 〈~x,~v〉 is evaluated in the
exponent of the Gq subgroup.

The Gp subgroup is used to prevent an adversary from manipulating components of either
a ciphertext or a token and then evaluating a query on the improperly formed inputs. The Gp

subgroup encodes an equation which will evaluate to 0 in the exponent if the inputs to the query
algorithm are properly formed.

The Gr subgroup is used for to hide factors from other subgroups and ensure plaintext privacy.
In an analogous manner, the Gs subgroup is used to ensure predicate privacy. Also, the additional
subgroup Gs allows us to construct our scheme in a slightly different manner from KSW. For
example, the Gs subgroup allows us to eliminate the factor Q from the Gq subgroup in the K term
of the token.

As discussed earlier, in our proofs of security we will need to show that our main construction
is computationally indistinguishable from a scheme in which ciphertexts and tokens are formed
symmetrically. In the KSW construction, all terms in the ciphertext have the same exponent y in
the Gp subgroup. In our construction, we introduce an additional degree of randomness using the
exponent z. Terms in the ciphertext now contain two degrees of randomness, y and z, in the Gp

subgroup. This change is necessary to ensure symmetry of the ciphertext and the token in the Gp

subgroup.
To see why this is the case, recall that Decisional Diffie-Hellman is easy in bilinear groups. That

is, for a random vector gα1

p , gα2

p , . . . , gαk
p , it is easy to decide whether the exponents (α1, α2, . . . , αk)

are picked independently at random or picked from a prescribed one-dimensional subspace. On
the other hand, an informal interpretation of the Decisional Linear assumption tells us that it is
computationally hard to decide whether the exponents (α1, α2, . . . , αk) are picked independently at
random or picked randomly from a prescribed 2-dimensional subspace. The reason for introducing
the extra randomness z in the ciphertext is to ensure that the exponents in the Gp subgroup are
picked from a 2-dimensional subspace instead of a 1-dimensional subspace.

Similarly to [11, 12, 21], our construction consists of two parallel sub-systems. Note that C1,i

and C2,i (similarly, K1,i and K2,i) play identical roles. Our proof of security will rely on having
these two parallel sub-systems.

For comparison, we provide a review of the KSW construction in Appendix C.

4.3 Proof Overview

Our main security statement is the following theorem.

11

Theorem 4.1. Under the generalized Assumption 1 of the KSW construction, the generalized
C3DH assumption, and the Decisional Linear assumption, the symmetric-key predicate-only en-
cryption scheme presented in Section 4.1 is selectively single challenge secure.

Our proof technique consists of two steps. First, we prove that our construction achieves
plaintext privacy. Second, we prove that, for our construction, plaintext privacy implies predicate
privacy. Taken together, these results imply the security of our scheme.

Our construction defined above, which we call SchemeReal, does not immediately yield a
proof of these two properties. In order to argue these properties, we define two different schemes
that are computationally indistinguishable from our original construction. That is, no adversary
can tell whether tokens and ciphertexts are generated from our actual system or from one of the
two defined for the purposes of the proof.

We first define a system that we call SchemeQ, which very closely follows the KSW con-
struction. We reduce the plaintext privacy of SchemeQ to the plaintext privacy of the KSW
construction.

Next we define a system that we call SchemeSym, in which ciphertexts and tokens are formed
symmetrically. For this system it is straightforward to argue that plaintext privacy implies predicate
privacy.

We observe that since our main construction and the two variants defined are all computationally
indistinguishable (from an adversary’s view), it is actually possible to define any of them as the
“real” construction that we will actually use. We chose the variant described above due to (relative)
notational simplicity and slight efficiency advantages. We prove Theorem 4.1 in Appendix A.

5 Conclusions

We examined the idea of protecting the privacy of predicates in predicate encryption systems.
While this turns out to be an inherently unachievable in a public-key system, we showed that there
exist solutions in the symmetric-key setting. We first provided security definitions for predicate
encryption schemes in the symmetric-key setting and then presented a construction supporting inner
product queries, which are the most expressive queries supported by currently known schemes.

While semantic security of predicates is inherently impossible in the public-key setting, in the
future we might wish to consider relaxations of public-key encryption. For example, is it possible to
find interesting systems where predicates are drawn from a high entropy distribution, in a fashion
similar to recent work on deterministic encryption [4, 2]? Another open direction is to consider
“partial public-key encryption,” in which a public key might allow a user to generate only a subset
of valid ciphertexts. (The rest may be generated from a secret key or other public keys kept hidden
from an attacker.) Thus, certain predicates might be indistinguishable given the partial public keys
published.

Acknowledgments

We gratefully thank Philippe Golle for helpful discussions. Elaine Shi thanks Adrian Perrig for his
support while part of this research was conducted.

12

References

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange,
John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption
revisited: Consistency properties, relation to anonymous IBE, and extensions. In Advances in
Cryptology - Proceedings of CRYPTO ’05, pages 205–222. Springer-Verlag, August 2005.

[2] Mihir Bellare, Marc Fischlin, Adam O’Neill, and Thomas Ristenpart. Deterministic encryption:
Definitional equivalences and constructions without random oracles. In CRYPTO, pages 360–
378, 2008.

[3] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-
tion. In SP ’07: Proceedings of the 2007 IEEE Symposium on Security and Privacy, pages
321–334, Washington, DC, USA, 2007. IEEE Computer Society.

[4] Alexandra Boldyreva, Serge Fehr, and Adam O’Neill. On notions of security for deterministic
encryption, and efficient constructions without random oracles. In CRYPTO, pages 335–359,
2008.

[5] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without
random oracles. In Advances in Cryptology—EUROCRYPT 2004, volume 3027 of Lecture
Notes in Computer Science, pages 223–238. Berlin: Springer-Verlag, 2004. Available at http:
//www.cs.stanford.edu/∼xb/eurocrypt04b/.

[6] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO, pages
41–55, 2004.

[7] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key
encryption with keyword search. In EUROCRYPT, pages 506–522, 2004.

[8] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. In Joe Kilian,
editor, Proceedings of Crypto 2001, volume 2139 of LNCS, pages 213–29. Springer-Verlag, 2001.

[9] Dan Boneh, Craig Gentry, and Michael Hamburg. Space-efficient identity based encryption
without pairings. In FOCS, 2007.

[10] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In Joe
Kilian, editor, Proceedings of Theory of Cryptography Conference 2005, volume 3378 of LNCS,
pages 325–342. Springer, 2005.

[11] Dan Boneh and Brent Waters. A fully collusion resistant broadcast trace and revoke sys-
tem with public traceability. In ACM Conference on Computer and Communication Security
(CCS), 2006.

[12] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without
random oracles). In CRYPTO, 2006.

[13] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme.
In EUROCRYPT, pages 255–271, 2003.

13

[14] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based
encryption. In EUROCRYPT, pages 207–222, 2004.

[15] Melissa Chase. Multi-authority attribute based encryption. In TCC, pages 515–534, 2007.

[16] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In Proceed-
ings of the 8th IMA International Conference on Cryptography and Coding, pages 360–363,
London, UK, 2001. Springer-Verlag.

[17] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric
encryption: improved definitions and efficient constructions. In CCS ’06: Proceedings of the
13th ACM conference on Computer and communications security, 2006.

[18] O. Goldreich and R. Ostrovsky. Software protection and simulation by oblivious rams. JACM,
1996.

[19] Philippe Golle, Jessica Staddon, and Brent Waters. Secure conjunctive keyword search over
encrypted data. In Proc. of the 2004 Applied Cryptography and Network Security Conference,
2004.

[20] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption
for fine-grained access control of encrypted data. In CCS ’06: Proceedings of the 13th ACM
conference on Computer and communications security, pages 89–98, New York, NY, USA,
2006. ACM Press.

[21] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In Eurocrypt, 2008.

[22] Rafail Ostrovsky. Software protection and simulation on oblivious RAMs. PhD thesis, M.I.T,
1992. Preliminary version in STOC 1990.

[23] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-
monotonic access structures. In CCS ’07: Proceedings of the 14th ACM conference on Com-
puter and communications security, 2007.

[24] Matthew Pirretti, Patrick Traynor, Patrick McDaniel, and Brent Waters. Secure attribute-
based systems. In CCS ’06: Proceedings of the 13th ACM conference on Computer and com-
munications security, pages 99–112, New York, NY, USA, 2006.

[25] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages
457–473, 2005.

[26] Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings of Crypto
’84, volume 196 of LNCS, pages 47–53. Springer-Verlag, 1984.

[27] Elaine Shi, John Bethencourt, T-H. Hubert Chan, Dawn Song, and Adrian Perrig. Multi-
dimensional range query over encrypted data. In IEEE Symposium on Security and Privacy,
May 2007.

14

[28] Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption systems. In
Proceedings of ICALP, 2008. Full version can be found online at http://sparrow.ece.cmu.
edu/∼elaine/docs/delegation.pdf.

[29] Dawn Song, David Wagner, and Adrian Perrig. Practical techniques for searches on encrypted
data. In Proceedings of the 2000 IEEE symposium on Security and Privacy (S&P 2000), 2000.

A Proof of Security

In this section, we prove Theorem 4.1, which states the selective single challenge security (cf. Defi-
nition 2.4) of our main construction. To do this, it suffices to prove plaintext privacy and predicate
privacy separately.

In our proof, we make a series of modifications to our main construction and show that each
resulting construction is computationally indistinguishable from our main construction. To prove
that our main scheme has plaintext privacy (or predicate privacy), it suffices to prove that a scheme
that is computationally indistinguishable from our main scheme has plaintext privacy (or predicate
privacy). The following definition formalizes the notion of computational indistinguishability of
symmetric-key predicate encryption schemes.

Definition A.1 (Indistinguishability of Symmetric-Key Predicate Encryption Schemes). We say
that two symmetric-key predicate encryption schemes Scheme0 and Scheme1 are computationally
indistinguishable if no polynomial-time adversary A has more than negligible advantage in winning
the following distinguishing game:

Setup. The challenger chooses a random bit b. The challenger runs Schemeb.Setup(1λ) and
keeps SK to itself.

Queries. The adversary A adaptively issues queries where each query is one of the following:

• Ciphertext query. A outputs a bit t = 0 (indicating a ciphertext query) and a plaintext
x. The challenger responds with Schemeb.Encrypt(SK, x).

• Token query. A outputs a bit t = 1 (indicating a token query) and a description of a
predicate f . The challenger responds with Schemeb.GenToken(SK, f).

Guess. Finally, A outputs a guess b′ of b.

The advantage of A is defined as AdvA =
∣∣Pr[b′ = b]− 1

2

∣∣.

The notion of computational indistinguishability of two schemes will be useful throughout our
proof, as, to prove plaintext privacy (or predicate privacy) of a scheme Scheme0, it suffices to
prove plaintext privacy (or predicate privacy) of a scheme Scheme1 which is computationally
indistinguishable from Scheme0. This is formally stated in the following proposition.

Proposition A.2. Let Scheme0 and Scheme1 denote two computationally indistinguishable symmetric-
key predicate encryption schemes. Then Scheme0 has plaintext privacy (or predicate privacy) if
and only if Scheme1 has plaintext privacy (or predicate privacy).

15

Proof. Suppose for the purpose of contradiction, without loss of generality, that Scheme0 has plain-
text privacy and Scheme1 does not have plaintext privacy. Then there exists a polynomial-time
adversary A that can win the plaintext privacy game of Scheme1 with non-negligible probability
ǫ. We can leverage this adversary A to build a simulator B that distinguishes between Scheme0

and Scheme1. The simulator B plays the role of the challenger in the plaintext privacy game with
A, forwarding A’s queries to its own challenger and forwarding its challenger’s responses to A. If A
wins the plaintext privacy game, B outputs a guess of b′ = 1; otherwise, it outputs b′ = 0. The sim-
ulator B has advantage at least ǫ/2 in distinguishing between Scheme0 and Scheme1, contradicting
the assumption that Scheme0 and Scheme1 are computationally indistinguishable.

A.1 Assumptions

In addition to the three assumptions stated in Section 3.2, we will also use the following assumptions,
which are implied by those previously stated. Note that these are not new assumptions, as they
can be reduced to those assumptions already introduced.

Assumption W The Assumption W game is identical to the Assumption 1 game, except that,
whereas the Assumption 1 game gives the adversary A the tuple

V =
(
gp, gr, gs, gqR1, gb

p, gb2

p , ga
pgq, gab

p Q1, gc
p, gbc

p Q2R2, T = gb2c
p gγ

q R3

)
,

the Assumption W game gives the adversary A a subset V ′ ⊂ V :

V ′ =
{

gp, gr, gs, gqR1, gb2

p , ga
pgq, gc

p, T = gb2c
p gγ

q R3

}
,

Definition A.3. We say that G satisfies the Assumption W if, for all PPT algorithms A, the
advantage of A in winning the above game is negligible in the security parameter λ.

Clearly, Assumption W is weaker than Assumption 1.

ℓ-C3DH Assumption Let G be a group generator algorithm. Run G(1λ) to obtain (p, q, r, s, G, GT , e).
Let N = pqrs and let gp, gq, gr, gs be random generators of Gp, Gq, Gr, Gs, respectively. Choose

random w1, w2, . . ., wℓ
R
← Gq, random ω

R
← ZN , random Ŝ1, . . . , Ŝℓ, S̃1, . . . , S̃ℓ, S1, . . . , Sℓ

R
← Gs,

and random Q1, Q2, . . . , Qℓ
R
← Gq. Choose a random bit b. Give the adversary A the description

of the bilinear group, (N, G, GT , e). If b = 0, give A the tuple

(w1Ŝ1, . . . , wℓŜℓ, wω
1 S̃1, . . . , w

ω
ℓ S̃ℓ).

If b = 1, give A the tuple
(w1Ŝ1, . . . , wℓŜℓ, Q1S1, . . . , QℓSℓ).

The adversary A outputs a guess b′ of b. The advantage of A is defined as AdvA =
∣∣Pr[b′ = b]− 1

2

∣∣.

Definition A.4. We say that G satisfies the ℓ-C3DH assumption if, for all PPT algorithms A, the
advantage of A in winning the above game is negligible in the security parameter λ.

The ℓ-C3DH assumption can be shown to follow from the generalized C3DH assumption using a
simple hybrid argument. Shi and Waters [28] also used the ℓ-C3DH assumption as an intermediate
assumption in their proofs.

16

ℓ-DLinear Assumption Let G be a group generator algorithm. Run G(1λ) to obtain (p, q, r, s,
G, GT , e). Let N = pqrs and let gp, gq, gr, gs be random generators of Gp, Gq, Gr, Gs, respectively.

Let ℓ be an integer greater than 2. Choose two random vectors ~y = (y1, y2, . . . , yℓ)
R
← F

ℓ
p and

~z = (z1, z2, . . . , zℓ)
R
← F

ℓ
p. Choose a random bit b. Choose a vector ~γ = (γ1, γ2, . . . , γℓ) in one of two

ways, depending on the value of b. If b = 0, choose γ1, γ2, . . . , γℓ independently at random from
Zp. In other words, the vector ~γ is picked at random from the vector space F

ℓ
p. If b = 1, choose

the vector ~γ = (γ1, γ2, . . . , γℓ) from the 2-dimensional subspace span(~y, ~z) of F
ℓ
p generated by ~y, ~z2.

Specifically, choose random w, t
R
← Zp and let ~γ = w~y + t~z. Define the following notation:

g~x
p :=

(
gx1

p , gx2

p , . . . , gxℓ
p

)
where ~x ∈ F

ℓ
p.

Give the adversary the description of the group, (N = pqrs, G, GT , e), generators of each subgroup,
gp, gq, gr, gs, and the following tuple: (

g~y
p , g~z

p, g~γ
p

)
.

The adversary outputs a guess b′ of the bit b. The advantage of A is defined as AdvA =∣∣Pr[b′ = b]− 1
2

∣∣.

Definition A.5. We say that G satisfies the ℓ-DLinear assumption if, for all PPT algorithms A,
the advantage of A in winning the above game is negligible in the security parameter λ.

We can show that the ℓ-DLinear problem is at least as hard as the Decision Linear problem
using a hybrid argument, as follows.

We define the following sequence of games, where ∗ represents a random element from Gp.

Game What the challenger gives to the adversary

Gameℓ (g~y
p , g~z

p, gwy1+tz1

p , gwy2+tz2

p , gwy3+tz3

p , . . . , g
wyℓ−2+tzℓ−2

p , g
wyℓ−1+tzℓ−1

p , gwyℓ+tzℓ
p)

Gameℓ−1 (g~y
p , g~z

p, gwy1+tz1

p , gwy2+tz2

p , gwy3+tz3

p , . . . , g
wyℓ−2+tzℓ−2

p , g
wyℓ−1+tzℓ−1

p , ∗)

Gameℓ−2 (g~y
p , g~z

p, gwy1+tz1

p , gwy2+tz2

p , gwy3+tz3

p , . . . , g
wyℓ−2+tzℓ−2

p , ∗, ∗)

.

Game2 (g~y
p , g~z

p, gwy1+tz1

p , gwy2+tz2

p , ∗, . . . , ∗, ∗, ∗)

It is clear that Gameℓ is equivalent to the ℓ-DLinear experiment when b = 1; and Game2 is
equivalent to the ℓ-DLinear experiment when b = 0. Using a hybrid argument, it suffices to prove
that no polynomial-time adversary can distinguish between two adjacent games.

We now show that if there exists a PPT adversary A that can distinguish between two adjacent
games Gamed and Gamed−1 with ǫ advantage, then we can build a simulator B that uses A and
wins the DLinear experiment also with ǫ advantage.

Suppose B is given the DLinear instance (gp, ga
p , gb

p, gaρ
p , gbτ

p , Y) and tries to decide whether

Y = gρ+τ
p or Y

R
← Gp. The simulator chooses random elements k2, k3, . . ., kd−1, yd, yd+1, . . ., yℓ,

and w2, w3, . . ., wd−1, zd, zd+1, . . ., zℓ from ZN , and implicitly sets:

~y = (a, k2a, k3a, . . . , kd−1a, yd, yd+1, . . . , yℓ)

2In the unlikely event that ~y and ~z are linearly dependent, dim(span(~y, ~z)) < 2. However, this happens with
negligible probability.

17

~z = (b, w2b, w3b, . . . , wd−1b, zd, zd+1, . . . , zℓ)

It also implicitly sets
w = ρy−1

d , t = τz−1
d

where multiplicative inverses are taken modular N . (For our purposes, this is equivalent to taking
multiplicative inverses modular p.) Note that the simulator does not know the values of a, b, ρ, τ .
It merely sets the above parameters implicitly, without actually computing them.

The simulator B computes the following tuple and gives it to A:

g~y
p , g~z

p , (gaρ
p)y

−1

d (gbτ
p)zd

−1

,
{

(gaρ
p)kiy

−1

d (gbτ
p)wiz

−1

d

}d−1

i=2
, Y, ∗, ∗, . . . , ∗

Clearly, if Y = gρ+τ
p , then the above experiment is identically distributed as in Gamed. Otherwise,

if Y is a random element in Gp, then the above experiment is identically distributed as in Gamed−1.
Hence, if A can distinguish between Gamed−1 and Gamed with ǫ advantage, then B can win the
DLinear experiment with ǫ advantage as well.

A.2 Proof Overview

The proof of Theorem 4.1 consists of two main parts.

1. Plaintext privacy. First, we show in Section A.3 that our main construction (henceforth
referred to as SchemeReal) achieves plaintext privacy. This part of the proof consists of
two steps.

(a) First, we show that SchemeReal is computationally indistinguishable from a variant
scheme which we call SchemeQ.

(b) Second, we show that SchemeQ achieves plaintext privacy. More specifically, SchemeQ

bears enough resemblance to the KSW construction that we can reuse the KSW proof
of plaintext privacy in a blackbox fashion.

2. Predicate privacy. Next, we show in Section A.4 that SchemeReal is computationally
indistinguishable from an alternative scheme which we call SchemeSym, in which the tokens
and ciphertexts are formed symmetrically. As SchemeSym and SchemeReal are computa-
tionally indistinguishable, it suffices to prove plaintext and predicate privacy for SchemeSym.
The plaintext privacy of SchemeSym follows from the plaintext privacy of SchemeReal.
Since tokens and ciphertexts are symmetrically formed in SchemeSym, the plaintext privacy
of SchemeSym implies predicate privacy as well.

A.3 Plaintext Privacy of SchemeReal

In this section, we prove the following lemma.

Lemma A.6 (Plaintext Privacy of SchemeReal). Under the generalized C3DH assumption and
Assumption 1, SchemeReal has plaintext privacy.

We know that the KSW construction has plaintext privacy (in the public-key setting). To prove
the plaintext privacy of our construction, SchemeReal, we first observe the differences between
our construction and KSW.

18

1. Our construction introduces the u1,i, u2,i terms. As a result, we need an extra component in
both the ciphertext and the token: the C and K terms in KSW become C,C0 and K,K0 in
our construction.

2. Our construction removes the Gq elements from the K and K0 components of the token. (To

compare, notice the Q6
R
← Gq element in the K term in KSW.)

The intuition behind the proof of plaintext privacy of SchemeReal is to show that these modifi-
cations preserve the plaintext privacy of the KSW construction.

The proof of Lemma A.6 consists of two parts:

1. We construct a hybrid scheme called SchemeQ, in which we add back the random hiding
factors from Gq to the K and K0 terms in the token. We show that SchemeReal and
SchemeQ are computationally indistinguishable.

2. We prove the plaintext privacy of SchemeQ. The proof is a reduction showing that if there
exists a PPT adversary A that breaks the plaintext privacy of SchemeQ, then we can build
a simulator B that leverages the adversary A to break the plaintext privacy of the KSW
construction.

We show that SchemeReal is indistinguishable from a scheme SchemeQ using a series of
hybrid schemes, defined as follows. For the reader’s convenience, we underline the parts where each
scheme differs from the previous scheme.

Scheme1: The Encrypt and Query algorithms are the same as in SchemeReal. The Setup
algorithm is the same as in SchemeReal except that it chooses a random ω ∈ ZN and
includes it in the secret key. In the GenToken algorithm, instead of choosing f1, f2 ∈ ZN

independently at random, we choose f ∈ ZN at random, and lets f1 = f , and f2 = ωf . The
token is computed as

TK~v =




K = R ·
∏n

i=1 h
−r1,i

1,i h
−r2,i

2,i , K0 = R0 ·
∏n

i=1 u
−r1,i

1,i u
−r2,i

2,i ,
{

K1,i = g
r1,i
p gfvi

q S1,i, K2,i = g
r2,i
p gωfvi

q S2,i

}n

i=1


 .

Scheme2: The Setup, Encrypt, and Query algorithms are the same as in Scheme1. The GenToken
algorithm chooses a random Q ∈ Gq, and multiplies Q to K. Note that a fresh Q is chosen
each time GenToken is called. The token is computed as

TK~v =




K = QR ·
∏n

i=1 h
−r1,i

1,i h
−r2,i

2,i , K0 = R0 ·
∏n

i=1 u
−r1,i

1,i u
−r2,i

2,i ,
{

K1,i = g
r1,i
p gfvi

q S1,i, K2,i = g
r2,i
p gωfvi

q S2,i

}n

i=1


 .

Scheme3: The Setup, Encrypt, and Query algorithms are the same as in Scheme2. The GenToken
algorithm chooses a random Q0 ∈ Gq and multiplies Q0 to K0. The rest of the algorithm is
the same as in Scheme2. The token is computed as

TK~v =




K = QR ·
∏n

i=1 h
−r1,i

1,i h
−r2,i

2,i , K0 = Q0R0 ·
∏n

i=1 u
−r1,i

1,i u
−r2,i

2,i ,
{

K1,i = g
r1,i
p gfvi

q S1,i, K2,i = g
r2,i
p gωfvi

q S2,i

}n

i=1


 .

19

SchemeQ: The Setup, Encrypt, and Query algorithms are the same as in Scheme3. The GenToken
algorithm chooses the exponents f1, f2 ∈ ZN independently at random as in SchemeReal.
The rest of the algorithm is the same as in Scheme3. The token is computed as

TK =




K = QR ·
∏n

i=1 h
−r1,i

1,i h
−r2,i

2,i , K0 = Q0R0 ·
∏n

i=1 u
−r1,i

1,i u
−r2,i

2,i ,
{

K1,i = g
r1,i
p gf1vi

q S1,i, K2,i = g
r2,i
p gf2vi

q S2,i

}n

i=1




A.3.1 Computational Indistinguishability of SchemeReal and Scheme1

In this section, we prove the following lemma:

Lemma A.7 (Computational indistinguishability of SchemeReal and Scheme1). Under the
ℓ-C3DH assumption, Scheme1 is computationally indistinguishable from SchemeReal.

Proof. Assuming ℓ-C3DH, we can prove that SchemeReal and Scheme1 are indistinguishable
through a simple reduction argument. Suppose there exists an adversary A, making ℓ token queries,
that can distinguish between SchemeReal and Scheme1, we can use A to build a simulator B
that can win the above ℓ-C3DH game. The simulator B is randomly given one of the following two
tuples. In the case b = 0, B is given

(w1Ŝ1, . . . , wℓŜℓ, W1 = wω
1 S̃1, . . . ,Wℓ = wω

ℓ S̃ℓ).

In the case b = 1, B is given

(w1Ŝ1, . . . , wℓŜℓ, W1 = Q1S1, . . . ,Wℓ = QℓSℓ).

The goal of the simulator is to determine the bit b.
In the Setup phase of the game, the simulator generates the secret key (without the ω com-

ponent) and keeps the secret key to itself. (The simulator can generate the secret key given the
generators of the different subgroups.)

In answer to the jth token query, the simulator uses the terms wj Ŝj and Wj from the ℓ-C3DH
instance to create the following token:

TK =




K = R ·
∏n

i=1 h
−r1,i

1,i h
−r2,i

2,i , K0 = R0 ·
∏n

i=1 u
−r1,i

1,i u
−r2,i

2,i ,
{

K1,i = g
r1,i
p (wj Ŝj)

viS1,i, K2,i = g
r2,i
p W vi

j S2,i

}n

i=1




Clearly, if b = 0, the tokens are formed as in Scheme1; if b = 1, the tokens are formed as in
SchemeReal.

If A outputs a guess of Scheme1, the simulator outputs a guess b′ = 0; if A outputs a guess
of SchemeReal, the simulator outputs a guess of b′ = 1. In this way, if A has ǫ advantage
in distinguishing SchemeReal and Scheme1, the simulator will have ǫ in winning the ℓ-C3DH
game.

Remark 1. When proving the computational indistinguishability of SchemeReal and Scheme1,
we rely on the Gs subgroup. Therefore, our proof of computationally indistinguishability of Scheme-

Real and SchemeQ also relies on the Gs subgroup. Thus, although we are able to computationally
remove the Gq subgroup from the K and K0 terms in the token in our construction, this does not
imply that we can do the same thing for the KSW construction, as the KSW construction does not
have the Gs subgroup. That is, our proof does not imply that one can safely remove the Gq subgroup
from the K term in the token of the KSW construction.

20

A.3.2 Computational Indistinguishability of Scheme1 and Scheme2

In this section, we prove the following lemma.

Lemma A.8 (Computational Indistinguishability of Scheme1 and Scheme2). Under Assumption
W, Scheme2 is computationally indistinguishable from Scheme1.

Proof. We build a simulator B that tries to break Assumption W. The simulator uses an adversary
A that tries to distinguish Scheme1 from Scheme2. If the adversary A has advantage ǫ in distin-
guishing Scheme1 from Scheme2, then the simulator B has advantage ǫ in breaking Assumption
W.

The simulator B is given an instance of Assumption W, and it plays the following distinguishing
game with the adversary A. The adversary makes queries for ciphertexts and tokens, and in
answer to these queries, the simulator computes ciphertexts and tokens following a certain strategy.
The resulting ciphertexts and tokens are distributed either according to Scheme1 or according to
Scheme2. In particular, if the simulator is given T = gb2c

p R3 from the Assumption W instance,
then the encryption scheme used would be identically distributed as Scheme1; otherwise, if T =
gb2c
p Q3R3, the encryption scheme used would be identically distributed as Scheme2.

• Setup. The simulator is given an instance of Assumption W, and it uses this to create the
following secret key:

SK =
(
ω, gp, gr, gs,

{
h1,i = (gb2

p)ωyi , h2,i = gzi
p (gb2

p)−yi , u1,i = gci
p , u2,i = gdi

p

}n

i=1

)

where ω, {zi, yi, ci, di}
n
i=1 are random exponents from ZN . In the above SK, the following

elements are inherited from the Assumption W instance: gp, gr, gs and gb2

p .

Notice that the simulator does not know gq, which ought to be part of the secret key. We
show that the simulator is still able to answer ciphertext queries and token queries from the
adversary appropriately, in spite of not knowing gq.

• Ciphertext query. In spite of not knowing gq, the simulator is able to compute ciphertexts,
as it knows a generator gr of Gr and gqR1 from the Assumption W instance.

• Token query. To answer a token query, the simulator picks random values r, f from ZN ,
random hiding factors R,R0 from the subgroup Gr, and random {S1,i, S2,i}

n
i=1 from Gs.

The simulator uses the following strategy to choose the values of {r1,i, r2,i}
n
i=1. First, the

simulator picks random exponents {τi, r1,i, r2,i}
n
i=1 from ZN . The simulator then implicitly

sets the values of {r1,i, r2,i}
n
i=1 to be the following (without actually computing them):

∀i ∈ [n] : r1,i = afvi + τic + r1,i

r2,i = afωvi + r2,i
(1)

Using the above implicit values for {r1,i, r2,i}
n
i=1, the simulator computes a token as below:

∀i ∈ [n] : K1,i = S1,i · (g
a
pgq)

fvi(gc
p)

τig
r1,i
p

K2,i = S2,i · (g
a
pgq)

ωfvig
r2,i
p

(2)

21

In addition,

K = R ·
n∏

i=1

T−ωyiτi · h
−r1,i

1,i · (g−a
p R1)

fωzivi · h
−r2,i

2,i (3)

K0 = R0 ·

n∏

i=1

(
(g−a

p R1)
−fvi(gc

p)
τig

r1,i
p

)−ci
(
(g−a

q R1)
ωfvig

r2,i
p

)−di

(4)

Notice that the above equations make use of the term g−a
p R1. This can be obtained from the

terms gqR1 and ga
pgq inherited from the Assumption W instance:

g−a
p R1 =

gqR1

ga
pgq

It can be seen that {K1,i,K2,i}
n
i=1 as defined in Equation (2), and K0 as defined in Equation

(4), are correctly formed as in Scheme1 (or Scheme2). Recall that K0, {K1,i,K2,i}
n
i=1 have

the same form in both Scheme1 and Scheme2. We now show that if γ from the Assumption
W instance is equal to 0, then K as defined in Equation (3) is distributed as in Scheme1.

Otherwise, if γ
R
← ZN , K as defined in Equation (3) is distributed as in Scheme2.

To see that K has the correct distribution, let K0,p,K0,q,K0,r denote the projections of K
into the subgroups Gp, Gq, Gr respectively. Clearly, K0,r has the correct distribution.

We now verify that K0,q and K0,p have the correct distribution.

One can see that

K0,q = g−γκ
q where κ = ω

n∑

i=1

yiτi

Clearly, if γ = 0 in the Assumption W instance, then K0,q is distributed as in Scheme1,

i.e., K does not contain an element from the subgroup Gq. If γ
R
← ZN , observe that κ is

distributed uniformly at random in ZN , and is independent of {r1,i, r2,i}
n
i=1. Therefore, the

distribution of K0,q is statistically close to uniform at random. (In fact, it suffices to pick

τ1
R
← ZN , and fix τi = 0 for i ∈ [2, n].)

It remains to verify that K0,p has the correct distribution. The correct distribution of K0,p

is: ∏n
i=1 h

−r1,i

1,i h
−r2,i

2,i =
∏n

i=1(g
−b2ωyi
p)afvi+τic+r1,i · (g−zi

p gb2yi
p)afωvi+r2,i

=
∏n

i=1 g−b2cωyiτi
p h

−r1,i

1,i g−afωzivi
p h

−r2,i

2,i

(5)

One can see that the K defined in Equation (3) has the same Gp component as the above

Equation (5). A crucial observation here is that all terms involving gab2

p (which is unknown
to the simulator) cancel out. This is the reason why the simulator can generate the token
efficiently.

• Guess. The simulator B outputs the same guess b′ output by the adversary A.

Clearly, if the adversary A has advantage ǫ in distinguishing Scheme1 and Scheme2, then
the simulator B also has advantage ǫ in breaking Assumption W. This completes the proof of
Lemma A.8.

22

A.3.3 Computational Indistinguishability of Scheme2, Scheme3, SchemeQ

In this section, we prove the indistinguishability of Scheme2, Scheme3, and SchemeQ.

Lemma A.9 (Computational indistinguishability of Scheme2 and Scheme3). Under Assumption
1 of KSW [21], Scheme3 is computationally indistinguishable from Scheme2.

Proof. The proof of this claim is very similar to that of Claim A.8. The only difference is that
in this proof, the simulator needs to re-randomize the term K with a random element from the
subgroup Gqr = Gq ×Gr. The simulator can do this because it knows the terms gqR1 and gr. (In
comparison, in the proof of Lemma A.8, the simulator re-randomizes the term K0 with an element
from Gr).

Finally, we show that Scheme3 and SchemeQ are computationally indistinguishable, complet-
ing the sequence of hybrid schemes, proving that SchemeReal and SchemeQ are computationally
indistinguishable.

Lemma A.10. Under the generalized C3DH assumption, Scheme3 and SchemeQ are computa-
tionally indistinguishable.

Proof. Similar to that of Claim A.7.

A.3.4 Plaintext Privacy of SchemeQ

We have shown that SchemeReal is computationally indistinguishable from SchemeQ. We now
show that SchemeQ has plaintext privacy. This implies that SchemeReal has plaintext privacy
as well.

The original KSW construction runs in a bilinear group of order N = pqr. This part of the proof
relies on the observation that if we run the KSW construction in the subgroup Gpqr = Gp×Gq×Gr

residing in a larger bilinear group of order N = pqrs, the KSW construction still has plaintext
privacy. Fundamentally, this relies on the fact that Assumption 1 still holds when the bilinear
group Gpqr in question resides in the context of a larger group G = Gpqrs.

Lemma A.11. If Assumption 1 holds in the bilinear group G, then SchemeQ has plaintext privacy.

Proof. The proof is based on the plaintext privacy of the KSW construction. We show that if there
exists a polynomial-time adversary A that can break the plaintext privacy of SchemeQ, we can
build a polynomial-time simulator B that leverages A to break the plaintext privacy of the KSW
construction. Recall that the KSW construction uses a bilinear group of order N = pqr. We assume
that this group resides in a larger group of size N = pqrs, and that Assumption 1 still holds in the
context of this larger group.

The simulator B acts as the challenger of the SchemeQ adversary A and tries to break the
plaintext privacy of KSW, interacting with its own challenger C. The simulator B uses the following
strategy to interact with A: wheneverA submits a ciphertext or token query, the simulator B simply
forwards it along to the challenger C. In return, B obtains a KSW ciphertext or token. Now B
augments the KSW ciphertext or token before handing the answer over to the adversary A. For
example, part of the augmentation performed by B is to fill in the terms C0 and K0.

• Init. The SchemeQ adversary A commits to a ciphertext challenge (~x0, ~x1) to the simulator
B. B forwards the same challenge (~x0, ~x1) to C.

23

• Setup. C runs the Setup algorithm of KSW, and gives the following public key to the
simulator B.

PK = (gp, gr, gs, Q = gq ·R, {H1,i,H2,i}
n
i=1)

In addition, B generates the following secrets:

{u1,i = gyi
p , u1,i = gzi

p }
n
i=1

where {yi, zi}
n
i=1 are random in ZN .

• Ciphertext queries. Whenever the adversary A submits a ciphertext query for the vector
~x ∈ (ZN)n, B computes the following ciphertext and returns it to the adversary. Pick random
exponents y, z, α, β from ZN , random hiding factors S, S0 from Gs, and random {R1,i, R2,i}

n
i=1

from Gr.

CT =




C = S · gy
p , C0 = S0 · g

z
p,{

C1,i = Hy
1,iu

z
1,iQ

αxiR1,i, C2,i = Hy
2,iu

z
2,iQ

βxiR2,i

}n

i=1




• Token queries. Whenever the adversary A makes a token query for a vector ~v ∈ (ZN)n, the
simulator asks C to generate a KSW token for the same vector ~v. Suppose the KSW token
for ~v is formed as below:

KSW.TK = (k0, {k1,i, k2,i}
n
i=1)

The simulator now transforms the KSW token into a SchemeQ token as below. The simulator

picks a random exponent r
R
← ZN ; a random hiding factor R0 from the subgroup Gr; and

random {S1,i, S2,i}
n
i=1 from Gs.

TK =

(
K = k0, K0 = R0Q

r
∏n

i=1 k−yi

1,i k−zi

2,i ,

{K1,i = k1,iS1,i, K2,i = k2,iS2,i}
n
i=1

)

• Challenge. When A requests a challenge, B requests a challenge from C. Suppose B obtains
the following challenge ciphertext from C:

KSW.CT = (c0, {c1,i, c2,i}
n
i=1)

The simulator transforms the above KSW ciphertext to a SchemeQ ciphertext. It picks

t
R
← ZN , S, S0

R
← Gs, and computes:

CT =




C = S · c0, C0 = S0 · g
t
p,{

C1,i = c1,iu
t
1,i, C2,i = c2,iu

t
2,i

}n

i=1




• More ciphertext and token queries. Same as above.

• Guess. The simulator B outputs the same guess as the adversary A.

It is straightforward to verify that in the above simulation, the ciphertexts and tokens computed
by B has the correct distribution. Clearly, if A has ǫ advantage in breaking SchemeQ, then the
simulator B has ǫ advantage in breaking KSW. This completes the proof of Lemma A.11.

24

A.4 Indistinguishability of SchemeReal and SchemeSym

We now show that SchemeReal is computationally indistinguishable from a scheme called SchemeSym,
where the tokens and the ciphertexts are symmetrically formed. The proof is carried out in the
following two steps:

1. We first define SchemeSym, and show that SchemeReal is computationally indistinguish-
able from SchemeSym.

2. Next, we show that in SchemeSym, the tokens and ciphertexts are symmetrically formed.

A.4.1 SchemeSym

We modify SchemeReal to obtain an alternative scheme called SchemeSym. Specifically, we
modify the way the GenToken algorithm picks the exponents {r1,i, r2,i}

n
i=1. In SchemeSym, the

exponents {r1,i, r2,i}
n
i=1 are no longer picked completely at random from Zp. Instead, these expo-

nents are now picked at random from a two-dimensional subspace of the vector space F
2n
p . The

scheme SchemeSym is defined as follows.

Setup(1λ): The setup algorithm first chooses a secret key as in SchemeReal. Additionally, it
chooses the following random exponents from Zp, and keeps them secret.

{y1,i, z1,i, y2,i, z2,i}
n
i=1

Encrypt(SK, ~x): Same as in SchemeReal.

GenToken(SK,~v): Instead of picking {r1,i, r2,i}
n
i=1 independently at random from Zp, the GenToken

picks random ρ, τ
R
← Zp, and sets the values of {r1,i, r2,i}

n
i=1 as below:

∀i ∈ [n] : r1,i = ρy1,i + τz1,i

r2,i = ρy2,i + τz2,i

The rest of the GenToken proceeds as in SchemeReal.

Query(TK~v, CT): Same as in SchemeReal.

One way to understand the above construction SchemeSym is as follows. Let ~y = {y1,i, y2,i}
n
i=1,

let ~z = {z1,i, z2,i}
n
i=1, let ~r = {r1,i, r2,i}

n
i=1. It is not hard to see that ~r is chosen at random

from a 2-dimensional subspace generated by ~y and ~z. Essentially, SchemeSym always chooses a
2-dimensional subspace during the setup phase. Later, when constructing tokens, SchemeSym

always picks the exponents ~r at random from this prescribed 2-dimensional subspace. Due to the
Decisional Linear assumption, picking the exponents from a 2-dimensional subspace is computa-
tionally indistinguishable from picking the exponents completely at random from the entire vector
space F

2n
p . We state this intuition in the following lemma.

So far, it may not be entirely clear why the ciphertexts and tokens are symmetrically formed
in SchemeSym. We explain why this is the case in Appendix A.4.2.

Lemma A.12. Assuming that the ℓ-DLinear assumption holds in Gp, SchemeSym is computa-
tionally indistinguishable from SchemeReal.

25

Proof. Let ℓ = 2n. We show that distinguishing between SchemeReal and SchemeSym is at
least as hard as the ℓ-DLinear problem as stated in Observation A.5. Our proof relies on a hybrid
argument on the number of token queries made by the adversary. Let k denote the number of
token queries made by the adversary. We define a sequence of games, Game0,Game1, . . . ,Gamek.
In Gamed (0 ≤ d ≤ k), for the first d tokens queried, the challenger picks the exponents {r1,i, r2,i}

n
i=1

from a pre-determined 2-dimensional subspace. For the remaining token queries d + 1, . . . , k, the
challenger picks completely random exponents {r1,i, r2,i}

n
i=1 from F

2n
p .

More specifically, Gamed (0 ≤ d ≤ k) is formally defined as below.

• Setup. The challenger picks two random vectors

~y = {y1,i, y2,i}
n
i=1

R
← F

2n
p

~z = {z1,i, z2,i}
n
i=1

R
← F

2n
p

and keeps them secret. These two vectors determine a 2-dimensional subspace span(~y, ~z).
Later, when the challenger answers the first d token queries made by the adversary, it will
pick the exponents {r1,i, r2,i}

n
i=1 at random from this subspace. The challenger now calls the

Setup algorithm to generate a secret key as in SchemeReal.

• Ciphertext queries. The challenger answers all ciphertext queries by directly calling the
Encrypt algorithm.

• Token queries. For the first d token queries, the challenger picks exponents {r1,i, r2,i}
n
i=1 as

below. Pick two random numbers ρ, τ
R
← Zp, and sets the values of ~r := {r1,i, r2,i}

n
i=1 to be

the following:
∀i ∈ [n] : r1,i = ρy1,i + τz1,i

r2,i = ρy2,i + τz2,i

Expressed in the vector form,
~r = ρ~y + τ~z

In other words, ~r is picked at random from the 2-dimensional subspace span(~y, ~z).

For the remaining token queries d + 1, . . . , k, the challenger generates tokens normally by
calling the GenToken algorithm.

It is not hard to see that Game0 is identically distributed as SchemeReal and Gamek is
identically distributed as SchemeSym. Using a hybrid argument, it suffices to show that no PPT
adversary is able to distinguish between two adjacent games Gamed−1 and Gamed (1 ≤ d ≤ k) with
more than negligible advantage.

We now show that if there exists a PPT adversary A that can distinguish between Gamed−1

and Gamed (1 ≤ d ≤ k) with ǫ advantage, we can build a polynomial-time simulator B that uses
A to break the ℓ-DLinear assumption also with ǫ advantage. Suppose B is given the ℓ-DLinear
instance (g~y

p , g~z
p , g~γ

p), where ~y = {y1,i, y2,i}
n
i=1, ~z = {z1,i, z2,i}

n
i=1, and ~γ = {γ1,i, γ2,i}

n
i=1. Now the

simulator tries to decide whether ~γ ∈ span(~y, ~z), or whether ~γ is a random vector in F
2n
p . To do

this, the simulator will set the exponents ~r = {r1,i, r2,i}
n
i=1 in the first d − 1 tokens to be random

vectors in span(~y, ~z). The simulator sets the exponents ~r in the dth token to be the vector ~γ. For

the remaining token queries, the simulator chooses random exponents ~r
R
← F

2n
p . In this way, if

26

~γ
R
← span(~y, ~z), the simulation is equivalent to Gamed; otherwise, if ~γ

R
← F

2n
p , the simulation is

equivalent to Gamed−1.

• Setup. The simulator picks the following secret key:

SK = (gp, gq, gr, gs,
{
h1,i = g

ω1,i
p , h2,i = g

ω2,i
p , u1,i = g

κ1,i
p , u2,i = g

κ2,i
p

}
)

where ω1,i, ω2,i, κ1,i, κ2,i are random exponents in Zp.

• Ciphertext queries. The simulator answers all ciphertext queries by directly calling the
Encrypt algorithm.

• Token queries. For all token queries, the simulator picks random exponents f1, f2 from ZN ;
random hiding factors R,R0 from the subgroup Gr; and random {S1,i, S2,i}

n
i=1 from Gs. It

chooses the values of ~r = {r1,i, r2,i}
n
i=1 as follows:

– For the first d − 1 token queries, the challenger picks random ρ, τ from Zp, (ρ, τ are
picked as fresh random numbers for each of the first d− 1 token queries.) and implicitly
lets ~r = {r1,i, r2,i}

n
i=1 to be the following (without actually computing it):

~r = ρ~y + τ~z

In the above expression, ~y and ~z are inherited from the ℓ-DLinear instance. Note that
the simulator does not know the values of ~y and ~z, it implicitly sets the vector ~r without
computing its value. Now the simulator computes the following token:

TK =




K = R ·
∏n

i=1(g
y1,i
p)−ρω1,i(g

z1,i
p)−τω1,i(g

y2,i
p)−ρω2,i(g

z2,i
p)−τω2,i ,

K0 = R0 ·
∏n

i=1(g
y1,i
p)−ρκ1,i(g

z1,i
p)−τκ1,i(g

y2,i
p)−ρκ2,i(g

z2,i
p)−τκ2,i ,

{
K1,i = (g

y1,i
p)ρ(g

z1,i
p)τgf1vi

q S1,i, K2,i = (g
y2,i
p)ρ(g

z2,i
p)τgf2vi

q S2,i

}n

i=1




– For the dth token query, the simulator will implicitly set the exponents ~r = ~γ, where ~γ
is adopted from the ℓ-DLinear instance. The simulator computes the following token:

TK =




K = R ·
∏n

i=1(g
γ1,i
p)−ω1,i(g

γ2,i
p)−ω2,i , K0 = R0 ·

∏n
i=1(g

γ1,i
p)−κ1,i(g

γ2,i
p)−κ2,i ,

{
K1,i = g

γ1,i
p gf1vi

q S1,i, K2,i = g
γ2,i
p gf2vi

q S2,i

}n

i=1




– For the remaining token queries d + 1, . . . , k, the simulator generates tokens by directly
calling the GenToken algorithm. In this case, ~r is chosen as a random vector in F

2n
p .

• Guess. If the adversary guesses that it is playing Gamed, the simulator guesses that ~γ
R
←

span(~y, ~z). Otherwise, if the adversary guesses that it is playing Gamed−1, the simulator

guesses that ~γ
R
← F

2n
p .

Clearly, if the adversary has ǫ advantage in distinguishing Gamed and Gamed−1 (1 ≤ d ≤ k), the
simulator also has ǫ advantage in the ℓ-DLinear experiment.

27

A.4.2 Symmetry of Token and Ciphertext in SchemeSym

So far, it may not be clear why the tokens and ciphertexts are symmetrically formed in SchemeSym.
To show that this indeed is the case, we describe a scheme called SchemeSymII and show that
the statistical distance between the distribution of tokens and ciphertexts in SchemeSym and the
distribution of tokens and ciphertexts in SchemeII is negligible. From the description of SchemeII,
it is clear that tokens and ciphertexts are symmetrically formed.

Before we formally define SchemeSymII, we first give some intuition. Notice that in SchemeSym,
both the ciphertext and token have 2n + 2 terms. Clearly, in SchemeSym, tokens and ciphertexts
are symmetric in the Gq, Gr, Gs subgroups. In particular, the Gq subgroup has the same form in
both the ciphertext and the token, and the Gr and Gs subgroups “mirror” each other.

However, it may not entirely obvious that the Gp subgroup is symmetric as well; this is what
we are about to show. Let us now focus on the elements in the Gp subgroup in the ciphertext and
token. We represent elements in the Gp subgroup in the canonical form gx

p , where gp is a generator
of Gp, and x ∈ Zp. In both the ciphertext and the token, the exponents in the Gp subgroup (base
gp) form a vector in F

2n+2
p . We now show that the statistical distance between the distribution of

these exponents and the following distribution is negligible:

• Pick two random 2-dimensional subspaces Z1, Z2 ⊂ F
2n+2
p that are orthogonal to each other,

i.e., Z1⊥Z2. The fact that Z1⊥Z2 ensures that the Gp subgroup cancels out in the Query
algorithm.

• For every ciphertext generated, pick a random vector ~µ
R
← Z1 to be the exponents in the Gp

subgroup (base gp).

• For every token generated, pick a random vector in ~ν
R
← Z2 to be the exponents in the Gp

subgroup (base gp).

Definition A.13 (SchemeSymII). We define the following encryption scheme called SchemeSymII.
From the description of SchemeSymII, it is clear that tokens and ciphertexts are symmetrically
formed.

Setup(1λ): The setup algorithm runs G(1λ) to obtain (p, q, r, s, G, GT , e) and chooses generators
gp, gq, gr, gs from subgroups Gp, Gq, Gr, Gs respectively. The setup algorithm also chooses
two orthogonal subspaces from F

2n+2
p . To do so, the setup algorithm picks the following

random exponents from Zp:

~µ1 =
(
c, c0, {c1,i, c2,i}

n
i=1

)
, ~µ2 =

(
d, d0, {d1,i, d2,i}

n
i=1

)
,

~ν1 =
(
y, y0, {y1,i, y2,i}

n
i=1

)
, ~ν2 =

(
z, z0, {z1,i, z2,i}

n
i=1

)
,

s.t. ∀(i, j) ∈ [2] × [2], 〈~µi, ~νj〉 = 0

In the above, the notation 〈~µ, ~ν〉 denotes inner product. For example,

〈~µ1, ~ν1〉 := cy + c0y0 +

n∑

i=1

(c1,iy1,i + c2,iy2,i)

All of the above parameters are kept as the secret key. Intuitively, by picking ~µ1, ~µ2 and
~ν1, ~ν2, we are picking two random 2-dimensional subspaces in F

2n+2
p that are orthogonal to

28

each other:
span(~µ1, ~µ2) ⊥ span(~ν1, ~ν2)

In the unlikely event that ~µ1 and ~µ2 (or ~ν1 and ~ν2) are linearly dependent, the dimension
of span(~µ1, ~µ2) (or span(~ν1, ~ν2)) may be smaller than 2. However, this happens only with
negligible probability.

Encrypt(SK, ~x): Let ~x = (x1, x2, . . . , xn) ∈ (ZN)n. The encryption algorithm first picks random
exponents w, t, α, β from Zp. Then, it chooses random hiding factors S, S0 from the subgroup
Gs; and random {R1,i, R2,i}

n
i=1 from Gr. The encryption algorithm computes the following

ciphertext:

CT =




C = S · gwc+td
p , C0 = S0 · g

wc0+td0

p ,
{

C1,i = g
wc1,i+td1,i
p gαxi

q R1,i, C2,i = g
wc2,i+td2,i
p gβxi

q R2,i

}n

i=1




Remark 2. In the above ciphertext, the exponents in the Gp subgroup form the following
vector:

~µ =
(
wc + td, wc0 + td0, {wc1,i + td1,i, wc2,i + td2,i}

n
i=1

)
= w~µ1 + t~µ2

One can see that ~µ is chosen as a random vector in the 2-dimensional subspace defined by
span(~µ1, ~µ2).

GenToken(SK,~v): Let ~v = (v1, v2, . . . , vn) ∈ (ZN)n. The GenToken algorithm behaves symmetri-
cally to the Encrypt algorithm. It first picks random exponents ρ, τ, f1, f2 from Zp. Then, it
chooses random hiding factors R,R0 from the subgroup Gr; and random {S1,i, S2,i}

n
i=1 from

Gs. The token is formed as below:

TK =




K = R · gρy+τz
p , K0 = R0 · g

ρy0+τz0

p
{
K1,i = g

ρy1,i+τz1,i
p gf1vi

q S1,i, K2,i = g
ρy2,i+τz2,i
p gf2vi

q S2,i

}n

i=1




Remark 3. In the above token, the exponents in the Gp subgroup form the following vector:

~ν =
(
ρy + τz, ρy0 + τz0, {ρy1,i + τz1,i, ρy2,i + τz2,i}

n
i=1

)
= ρ~ν1 + τ~ν2

One can see that ~ν is chosen as a random vector in the 2-dimensional subspace defined by
span(~ν1, ~ν2).

Query(TK~v, CT): Same as the Query algorithm of SchemeReal. Note that as the two subspaces
span(~µ1, ~µ2) and span(~ν1, ~ν2) are orthogonal to each other, 〈~µ, ~ν〉 = 0. Hence, in the Query
algorithm, elements in the Gp subgroup cancel out, resulting in 1 ∈ Gp.

Lemma A.14. The statistical distance between the distribution of tokens and ciphertexts in
SchemeSymII and in SchemeSym is negligible.

29

Proof. Let us now focus on SchemeSym. We first show that in the ciphertext, exponents in the Gp

subgroup are chosen as a random vector in a pre-determined 2-dimensional subspace (also chosen
at random) in F

2n+2
p .

For 1 ≤ i ≤ n, let ω1,i, ω2,i denote the discrete log of h1,i, h2,i (base gp); let κ1,i, κ2,i denote
the discrete log of u1,i, u2,i (base gp). {ω1,i, ω2,i}

n
i=1 and {κ1,i, κ2,i}

n
i=1 are chosen independently at

random from Zp in the Setup algorithm.

In the Encrypt algorithm of SchemeSym, we pick two random exponents w, t
R
← Zp, and in the

ciphertext, the exponents in the Gp subgroup (base gp) have the following form:

~µ :=
(
w, t, {wω1,i + tκ1,i, wω2,i + tκ2,i}

n
i=1

)
(6)

Define the following two vectors:

~µ1 := (1, 0, {ω1,i, ω2,i}
n
i=1) ∈ F

2n+2
p

~µ2 := (0, 1, {κ1,i, κ2,i}
n
i=1) ∈ F

2n+2
p

(7)

Equation (6) can be expressed in the following form:

~µ = w~µ1 + t~µ2

Therefore, an equivalent way to think of SchemeSym is as follows. In the Setup algorithm, we
pick two vectors ~µ1 and ~µ2 as in Equation (7), and span(~µ1, ~µ2) defines a random 2-dimensional
subspace in F

2n+2
p (except with negligible probability). Later, when computing ciphertexts, we

always pick the exponents in the Gp subgroup as a random vector in span(~µ1, ~µ2).
We now examine the tokens in SchemeSym. It remains to show that in the tokens, exponents in

the Gp subgroup are chosen as random vectors from a random 2-dimensional subspace orthogonal to
span(~µ1, ~µ2). We can see that in the tokens of SchemeSym, the exponents of the Gp subgroup are
picked from a subspace orthogonal to span(~µ1, ~µ2), since in the Query algorithm, the Gp subgroup
always cancels out, resulting in 1 ∈ Gp. Now, we just need to show that the exponents in the
token form a 2-dimensional subspace (as opposed to 1 dimension or other number of dimensions.)
To understand why this is the case, we now present alternative way to understand the formation
of tokens in SchemeSym. In the Setup phase, pick the vectors ~y = (y, y0, {y1,i, y2,i}

n
i=1) and

~z = (z, z0, {z1,i, z2,i}
n
i=1) as below:

1. Pick 2n out of the 2n + 2 coordinates at random, that is, pick {y1,i, y2,i}
n
i=1 at random from

Zp.

2. Given the constraints that 〈~y, ~µ1〉 = 0, and 〈~y, ~µ2〉 = 0, the first two coordinates y, y0 can be
solved through a system of linear equations. We have two linear equations with two indetermi-
nants. The coefficients of the linear equations are linearly independent except with negligible
probability. This means that except with negligible probability, y, y0 can be uniquely solved.

3. Pick ~z in exactly the same way as we did for ~y.

By picking the vectors ~y = (y, y0, {y1,i, y2,i}
n
i=1) and ~z = (z, z0, {z1,i, z2,i}

n
i=1) in the manner

specified above, we are equivalently picking a random subspace that is orthogonal to the subspace
span(~µ1, ~µ2).

Later, when computing tokens, the GenToken algorithm picks the exponents in the Gp subgroup
as a random vector from span(~y, ~z).

This concludes the proof of Lemma A.14.

30

B Proof of Theorem 2.8

Here, we prove that a single challenge secure symmetric-key predicate-only encryption scheme
supporting inner product queries for vectors of length 2n can be used to construct a fully secure
symmetric-key predicate-only encryption scheme supporting inner product queries for vectors length
n. Our proof is inspired by the hybrid argument used by [21].

Proof. Let Scheme2n be a single challenge secure symmetric-key predicate-only encryption scheme
supporting inner product queries over Z

2n
N . We construct a fully secure symmetric-key predicate-

only encryption scheme Schemen supporting inner product queries over Z
n
N .

For any two vectors ~x = (x1, . . . xn), ~y = (y1, . . . , yn) ∈ Z
n
N , define ~x‖~y = (x1, . . . , xn, y1, . . . , yn)

to be the vector obtained by concatenating ~x and ~y.
Informally, Schemen works as follows. To encrypt a vector ~x ∈ Z

n
N , encrypt the vector ~x‖~x ∈

Z
2n
N using Scheme2n. Similarly, to construct a token for the vector ~v ∈ Z

n
N , use Scheme2n to

construct a token for the vector ~v‖~v ∈ Z
2n
N . The algorithms of Schemen are defined as follows.

Schemen.Setup(1λ): Run Scheme2n.Setup(1λ). The secret key SK is the same as that generated
by Scheme2n.

Schemen.Encrypt(SK, ~x): Output Scheme2n.Encrypt(SK, ~x‖~x).

Schemen.GenToken(SK,~v): Output Scheme2n.GenToken(SK,~v‖~v).

Schemen.Query(TK~v, CT): Output Scheme2n.Query(TK~v, CT).

The correctness of Schemen results from the fact that for vectors ~x,~v ∈ Z
n
N ,

〈~x,~v〉 = 0 iff 〈~x‖~x, ~v‖~v〉 = 0.

We now show that Schemen is fully secure. Recall the full security game defined in Section 2.2.1.
First, the challenger picks a random bit b. Next, the adversary A adaptively issues queries to the
challenger. If a query is a ciphertext query (~xj,0, ~xj,1), the challenger responds with an encryption
of ~xj,b. If a query is a token query (~vi,0, ~vi,1), the challenger responds with a token for ~vi,b. A’s
queries are subject to the restriction that, for all ciphertext queries (xj,0, xj,1) and all predicate
queries (fi,0, fi,1), fi,0(xj,0) = fi,1(xj,1). At the end of the game, A outputs a guess b′ of b and wins
if b′ = b.

Suppose that the adversary A makes c ciphertext queries, (~x1,0, ~x1,1), . . ., (~xc,0, ~xc,1), and t
token queries, (~v1,0, ~v1,1), . . . , (~vt,0, ~vt,1).

Our task is to show that A cannot distinguish between two experiments: one where the chal-
lenger constructs ciphertexts for ~x1,0, . . . , ~xc,0 and tokens for ~v1,0, . . . , ~vt,0 (call this Game 0), and
one where the challenger constructs ciphertexts for ~x1,1, . . . , ~xc,1 and tokens for ~v1,1, . . . , ~vt,1 (call
this Game 1). To do this, we construct a series of hybrid games as follows.

Game 0 : The challenger calls Scheme2n and computes ciphertexts for ~x1,0‖~x1,0, ~x2,0‖~x2,0, . . .,
~xc,0‖~xc,0 and tokens for ~v1,0‖~v1,0, ~v2,0‖~v2,0, . . ., ~vt,0‖~vt,0.

Game A : The challenger calls Scheme2n and computes ciphertexts for ~x1,0‖~0, ~x2,0‖~0, . . ., ~xc,0‖~0
and tokens for ~v1,0‖~v1,0, ~v2,0‖~v2,0, . . ., ~vt,0‖~vt,0.

31

Game B : The challenger calls Scheme2n and computes ciphertexts for ~x1,0‖~0, ~x2,0‖~0, . . ., ~xc,0‖~0
and tokens for ~v1,0‖~v1,1, ~v2,0‖~v2,1, . . ., ~vt,0‖~vt,1.

Game M : The challenger picks a random α
R
← ZN , calls Scheme2n and computes ciphertexts for

~x1,0‖α~x1,1, ~x2,0‖α~x2,1, . . . , ~xc,0‖α~xc,1 and tokens for ~v1,0‖~v1,1, ~v2,0‖~v2,1, . . . , ~vt,0‖~vt,1.

Notice that in the above sequence of hybrid games, the outcomes of the predicates corresponding to
the generated tokens on the plaintexts in Z

2n
N encrypted by the challenger remain the same between

all pairs of adjacent games, except with negligible probability.

Claim 1. If Scheme2n is single challenge secure, then no PPT adversary A has more than neg-
ligible advantage in distinguishing between any pair of adjacent games in the above sequence of
games.

Proof. By a hybrid argument.

Similarly, we can construct a sequence of hybrid games connecting Game M and Game 1.
Using a hybrid argument, we conclude that no PPT adversary has more than negligible advantage
in distinguishing between Game 0 and Game 1.

C KSW Predicate Encryption Scheme

To aid in the understanding of our construction and the proof of security, we review the KSW
public key predicate-only encryption scheme for inner product queries [21].

Let G′ denote a group generator algorithm for a bilinear group whose order is the product of
three distinct primes.

Setup(1λ): The setup algorithm runs G′(1λ) to obtain (p, q, r, G, GT , e) with G = Gp × Gq × Gr.
Next it picks generators gp, gq, gr from subgroups Gp, Gq, Gr, respectively. It then chooses,
uniformly at random, h1,i, h2,i ∈ Gp, R1,i, R2,i ∈ Gr for i = 1 to n, and R0 ∈ Gr.

The public key consists of:

PK = (gp, gr, Q = gq · R0, {H1,i = h1,i · R1,i, H2,i = h2,i ·R2,i}
n
i=1)

The secret key is set to:
SK =

(
p, q, r, gq, {h1,i, h2,i}

n
i=1

)
.

Encrypt(PK,~x): Let ~x = (x1, . . . , xn) ∈ Z
n
N . The encryption algorithm first picks random expo-

nents y, α, β from ZN , and it chooses random R3,i, R4,i ∈ Gr for i = 1 to n. It outputs the
ciphertext

CT =
(
C = gy

p ,
{
C1,i = Hy

1,i ·Q
αxi · R3,i, C2,i = Hy

2,i ·Q
βxi ·R4,i

}n

i=1

)
.

GenToken(SK,~v): Let ~v = (v1, . . . , vn) ∈ Z
n
N . The token generation algorithm chooses random

f1, f2, {r1,i, r2,i}
n
i=1 from ZN , random R5 ∈ Gr, and random Q6 ∈ Gq. It outputs the token

TK~v =




K = R5 ·Q6 ·
∏n

i=1 h
−r1,i

1,i · h
−r2,i

2,i ,
{

K1,i = g
r1,i
p · gf1vi

q , K2,i = g
r2,i
p · gf2vi

q

}n

i=1


 .

32

Query(TK~v, CT): Let CT = (C, {C1,i, C2,i}
n
i=1) and TK~v = (K, {K1,i,K2,i}

n
i=1) as above. The

query algorithm outputs 1 iff

e(C,K) ·

n∏

i=1

e(C1,i,K1,i) · e(C2,i,K2,i)
?
= 1.

33

