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ABSTRACT
Systems using capabilities to provide preferential service to se-
lected flows have been proposed as a defense against large-scale
network denial-of-service attacks. While these systems offer strong
protection for established network flows, the Denial-of-Capability
(DoC) attack, which prevents new capability-setup packets from
reaching the destination, limits the value of these systems.

Portcullis mitigates DoC attacks by allocating scarce link band-
width for connection establishment packets based onper-computation
fairness. We prove that a legitimate sender can establish a capabil-
ity with high probability regardless of an attacker’s resources or
strategy and that no system can improve on our guarantee. We
simulate full and partial deployments of Portcullis on an Internet-
scale topology to confirm our theoretical results and demonstrate
the substantial benefits of using per-computation fairness.

Categories and Subject Descriptors:C.2.0 [Computer-Communication
Networks]: Security and protection
General Terms: Security, Design
Keywords: Network Capability, Per-Computation Fairness

1. INTRODUCTION
In a Distributed Denial-of-Service (DDoS) attack, an adversary,

sometimes controlling tens of thousands of hosts, sends traffic to a
victim to exhaust a limited resource, e.g., network capacity or com-
putation. The victim of a network DDoS attack can often identify
legitimate traffic flows but lacks the ability to give these flows pri-
oritized access to the bottleneck link; in contrast, routers have the
power to prioritize traffic, but cannot effectively identify legitimate
packets without input from the receiver.

Network capabilities enable a receiver to inform routers of its
desire to prioritize particular flows, offering a promising DDoS de-
fense [3, 22, 25, 31, 32]. To set up a network capability, the source
sends a capability request packet to the destination, and routers on
the path add cryptographic markings to the packet header. When
the request packet arrives at the receiver, the accumulated markings
represent the capability. The receiver permits a flow by returning
the capability to the sender, who includes the capability in subse-
quent packets to receive prioritized service from the routers.
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The Denial-of-Capability Attack and Defenses. Current pro-
posals for capability-based systems treat prioritized traffic (i.e., pack-
ets with a valid capability) preferentially over non-prioritized traf-
fic. However, capability-based systems still suffer from a criti-
cal weakness: they cannot protect the initial capability request,
because that request is sent unprotected as non-prioritized traffic.
An attacker can flood the capability-setup channel, thus prevent-
ing a legitimate sender from establishing a new capability-protected
channel. This attack, referred to as Denial-of-Capability (DoC) by
Argyraki and Cheriton [4], is the Achilles heel of current capability
proposals. Agryraki and Cheriton show that several thousand at-
tackers can easily saturate the request channel of a typical network
service, preventing legitimate senders from acquiring capabilities.

When describing the DoC vulnerability, Argyraki and Cheri-
ton argue that the same mechanism that protects the request chan-
nel could be used to protectall traffic [4]. We strongly disagree:
since only a single capability request packet is needed to set up
capability-protected communication, a simple and highly efficient
network-based defense suffices. As long as the mechanism pro-
vides a predictable and non-negligible probability that the sender’s
request packet reaches the receiver, it can prevent DoC attacks.For
example, if the capability request channel suffers a 50% loss rate, a
legitimate sender only needs to send about two packets to set up a
capability-protected communication channel. Alas, a 50% loss rate
would be far too high for efficient communication using TCP, and
thus such a mechanism could not protect later packets.

Previously proposed capability-based systems offer few, if any,
defenses against a DoC attack. Early systems simply treat capa-
bility request packets as best-effort packets [3, 22, 31]. The most
recent capability architecture, TVA [32], attempts to achieve DoC
robustness by tagging each packet with an identifier indicating the
packet’s ingress point to the autonomous system (AS) and then fair-
queuing packets at each router based on this identifier.1 However,
our evaluation in Section 6 indicates that this heuristic is insuffi-
cient to thwart DDoS attacks on Internet-scale topologies.

In this work, we present Portcullis,2 a system that uses computa-
tional proofs of work (puzzles) to enforce fair sharing of the request
channel. As a result, Portcullis strictly bounds the delay any adver-
sary can impose on a legitimate sender’s capability establishment.
Why Puzzles? While we explore the design space of DoC so-
lutions in Section 2.3, we now provide a high-level explanation of
why puzzles are particularly well-suited for solving the DoC prob-
lem. We argue that approaches like TVA that attempt to use a
packet identifier to group and prioritize aggregates of traffic are in-

1TVA allows further sub-dividing of these queues based on past
AS identifiers, but at the cost of greatly increased router state and
increased susceptibility to path spoofing.
2A portcullis is a grille or gate that restricts entry into a castle.
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adequate for networks as large and diverse as the Internet. A major
reason is that, short of trusting all routers on the Internet, network
identifiers are likely to be either spoofable or very course-grained.
Additionally, a single network identifier (e.g., IP address) can rep-
resent vastly different numbers of actual users (e.g., hosts behind a
NAT), limiting achievable fairness.

Proof-of-work schemes offer a compelling alternative. Instead of
trying to use identifiers in the packet header to provide fairness, a
router simply provides fairness proportional to the amount of work
performed by a sender. Such work can be verified and is thus dif-
ficult for an attacker to productively spoof. Since only one packet
must reach the destination in order to set up a capability, proof-of-
work schemes are sufficient to prevent DoC.

Walfish et al. propose a system calledspeak-upthat encourages
legitimate hosts to significantly increase their sending rates during
application-layer denial-of-service attacks [26], effectively using
bandwidth as “work”. However, the use of bandwidth as a “cur-
rency” is questionable, because the bandwidth available to typical
users may vary by factors of more than 1,500 (dial-up modem vs.
LAN connection), potentially placing legitimate users at a signifi-
cant disadvantage. Moreover, their results focused on application
layer DDoS attacks and assumed that the network itself was un-
congested. In the context of DoC and network-level congestion,
a speak-up style approach would inevitably create significant nega-
tive externalities for the network, because the increased traffic from
legitimate users can create new bottlenecks for clients accessing
destinations not under attack.

In contrast, puzzles provide a compelling solution because the
“work” performed by the end host, hence avoiding additional net-
work congestion. Also, computational disparities between users are
orders of magnitude smaller than disparities in network bandwidth
(Section 7.1 demonstrates a 38x difference in puzzle computation
power between a well-provisioned workstation and a cell phone).
Note that previous work [21] claiming that puzzles do not work
contains a crucial arithmetic miscalculation, and only considers a
simple, fixed-cost puzzle scheme that differs significantly from the
novel, variable proof-of-work scheme used by Portcullis (see Sec-
tion 8 for more details).
Contributions. In this paper we propose Portcullis, a system
that enforcesper-computationfairness for a capability system’s re-
quest channel. Portcullis makes the following contributions:

• We theoretically prove strict bounds on the delay that an arbi-
trary number of cooperating attackers computing and sharing
puzzles can inflict on a legitimate client’s capability setup us-
ing Portcullis (Section 4). This guarantee holds even if the
legitimate sender possesses no information about current net-
work conditions or the adversary’s resources.

• We theoretically prove that no system can improve on the
bounds provided by Portcullis.

• With Internet-scale simulations, we confirm experimentally
that even when tens of thousands of attackers cooperate to
compute and share puzzles, a legitimate client can quickly
overcome the numerical disparity and establish a capability
(Section 6).

• Portcullis’s novel proof-of-work mechanism avoids the pit-
falls of previous puzzle schemes: it does not require routers
or servers to individually provide puzzles to the sender [5,27,
28], does not rely on the sender’s IP address [5,27,28] (avoid-
ing problems with NATs and IP spoofing), does not require
senders to solve a different puzzle for each router along the
path to the destination [28], and does not allow puzzle reuse
at multiple servers nor require extensive CPU and memory at
clients, routers or servers [29].

2. PROBLEM DEFINITION AND GENERAL
COUNTERMEASURES

2.1 Background and Terminology
Capability-based systems divide packets intopriority packets,

request packets, andbest-effort packets.3 Priority packets are pack-
ets that carry a valid capability. Senders use request packets to es-
tablish a capability. As the request packet traverses the routers be-
tween the sender and the receiver, it accumulates the router mark-
ings that will form the capability. Best-effort packets are sent by
legacy hosts that are not capability-aware. Some capability-based
systems also treat packets with invalid capabilities as best-effort
traffic, while others drop them. Proposed capability systems [3,22,
31, 32] typically dedicate a large fraction of router bandwidth to
priority packets, a small fraction (5–10%) of total bandwidth to re-
quest packets (often referred to as therequest channel), and the rest
(5̃–10%) to best-effort packets.

2.2 Problem Definition
Capability systems attempt to thwart DDoS attacks by prioritiz-

ing legitimate traffic. However, an attacker can also launch a DDoS
attack on the request channel of the capability system. If the request
packets of legitimate users do not reach the capability granter, then
the capability system provides little protection against the effects
of the traditional DDoS attack. Thus, providing a secure request
channel is essential to the effectiveness of a capability system.

An effective request channel should guarantee that a sender suc-
cessfully transmits a request packet with only a small number of
retries, even in the presence of a large DDoS attack on the request
channel itself. We consider the case in which the adversary con-
trols nm hosts each sending traffic at a raterm. We also assume the
presence ofng legitimate senders that each send request packets at
a raterg (typically very low), but we make no assumptions about
the relative size ofng versusnm.

We only examine the case in which the request channel is con-
gested, i.e.,nm · rm+ng · rg > γ, whereγ = B ·α , B is the capacity
of the bottleneck link, andα is the percentage of bandwidth re-
served for the request channel. Since request packets contain no
input from the capability-granting destination to allow distinctions
between desired and undesired requests, the best the network can
do is provide an equal level of service to all requesters. In other
words, each requester should receive a1nm+ng

share of the available
request channelγ, regardless of whether that node is an attacker
with a high request rate or a legitimate node with a low request rate.
However, even with any reasonable fairness guarantee, the time re-
quired to establish a setup packet is still necessarily dependent on
the total number of users (nm+ng) and the amount of network ca-
pacity available.

2.3 Space of Countermeasures Against DoC
In this section, we divide the design space of potential counter-

measures into two classes based on identity and proof-of-work.

2.3.1 Identity-Based Fairness
Identity-based fairness schemes attempt to provide fairness based

on some packet identifier (e.g., an IP address). These schemes
are often susceptible to malicious spoofing of the identifier space
that can greatly magnify attacker power. Identity-based fairness
schemes can also experience problems when significant disparities
exist with respect to the number of users sharing a single identifier.

3Both Machiraju et al. [22] and Yaar et al. [31] treat request packets
as best-effort packets.
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Per-Source Fairness. A DDoS-defense system could attempt to
share bandwidth equally over all sources of traffic. In other words,
in a system withng + nm senders, a legitimate host would achieve
an outbound sending rate ofr ′g = min(rg,

γ
ng+m). Note thatr ′g is

independent of the aggregate attacking ratenm · rm.
Unfortunately, at the network level, an adversary can easily spoof

its IP address, and sources behind large NATs may be subject to
grossly unfair treatment. Egress filtering can lessen the severity of
such an attack [13], but without ubiquitous deployment, we must
assume that many adversaries can spoof their IP addresses with
relative impunity.
Per-Path Fairness. For per-path fairness, ifP= {p1, p2, . . . , pk}
represents the set of paths leading to the bottleneck router andNpi

represents the number of senders using pathpi , then a legitimate
sender using pathpi should achieve an outbound sending rate of

r ′g = min
(

rg,
γ
|P|

1
Npi

)

. To encode a path, Yaar, Perrig and Song pro-

pose Pi [30], a system in which routers insert path-dependent cryp-
tographic markings into the packet header. However, router queu-
ing based on such path markings breaks when malicious senders
insert bogus initial markings in the path ID field, making it appear
that such packets have traversed many distinct paths before arriving
at a particular router. This increases|P|, hurting legitimate senders,
and creates small values ofNpi for the spoofed paths, helping the
attacker. TVA bases its notion of fairness on path-dependent mark-
ings [32]. However, to avoid spoofing problems, their markings
depend only on the interface from which a packet entered the cur-
rent AS, and hence operates at a very coarse granularity.
Per-Destination Fairness. Alternately, a router could apportion
request channel bandwidth based on a packet’s destination address.
While destination addresses cannot be spoofed, an attacker can
“game” this approach by flooding packets to all destinations that
share the victim’s bottleneck link. Because legitimate users send
packets only to a single host, per-destination queuing can actually
amplify the power of an attacker.

2.3.2 Proof-of-Work Schemes
Proof-of-work schemes require senders to demonstrate the use

of a limited resource to the network infrastructure, with fairness
allotted proportionally to the “cost” of that resource. This solves
the spoofing/gaming issue (as long as work indicates a real cost),
but the resources needed to provide this work may have negative
externalities.
Per-Bandwidth Fairness. With per-bandwidth fairness, a sender
with bandwidth capacityκ should achieve an outbound sending
rate ofr ′g = min

(

rg,γ κ
K

)

, whereK represents the aggregate band-
width of all senders. To attain per-bandwidth fairness, Walfish et al.
propose a system called speak-up [26]. When a host experiences an
increase in incoming traffic, it uses the speak-up system to encour-
age legitimate senders to significantly increase their sending rates.
While their results demonstrate that each endhost will then receive
service proportional to its bandwidth, the analysis is focused en-
tirely on protecting end-host resources, not network links, and as-
sumes the network is uncongested. Other fundamental problems
with using bandwidth as a currency exist. First, requiring hosts to
compete on the basis of bandwidth necessarily imposes substantial
negative side-effects on the network as a whole, since hosts send-
ing to destinations other than the victim may experience congestion
because of the increase in traffic from legitimate senders. Second,
large disparities can exist in the amount of bandwidth available to
legitimate users. A user with a 100Mbps connection has over 1500
times more bandwidth than a user connecting at modem rates. This
leads to significant inequalities between legitimate users.

Per-Computation Fairness. As an alternative to per-bandwidth
fairness, we base our notion of fairness on computational effort.
With per-computation fairness, the probability of request packet
delivery is directly proportional to the amount of computational ef-
fort expended by a sender. Thus, a legitimate sender should achieve
an outbound rate ofr ′g = min

(

rg,γ
cg

C

)

, wherecg represents the
sender’s computational effort, andC represents the computational
effort expended by other senders using the same link. If every
sender has equal computational power, then per-computation fair-
ness is equivalent to per-source fairness, but without the problems
of shared or spoofed identifiers mentioned above. In the real world,
computational disparities do exist, but they are not nearly as pro-
nounced as the disparities in available bandwidth. As detailed in
Section 7.1, a well-provisioned PC and a smartphone have only a
38x disparity for computational puzzles. Additionally, researchers
have proposed the use of memory bound functions that can de-
crease computational disparities below 10x [1, 11, 12]. Finally, by
shifting the playing field from bandwidth to computation, fewer ex-
ternalities exist because the impact of the work is limited to a single
machine, making per-computation a significantly more network-
friendly approach.

3. PORTCULLIS ARCHITECTURE
Portcullis aims to provide a strong defense against large-scale

DDoS attacks: even when under attack, a legitimate sender can
successfully initiate a connection with the receiver and communi-
cate with low packet loss. Portcullis augments a standard capability
mechanism [3,31,32] with our new puzzle-based protection for ca-
pability request packets. Hence, the goal of the remainder of this
paper is to design a DoC-resistant request channel for a capability
system. This design is based on computational puzzles, which we
prove can provide optimal fairness for the request channel (see Sec-
tion 4). As a result, Portcullis strictly bounds the delay a collection
of attackers can impose on legitimate clients.

To achieve per-computation fairness we leverage a novel puzzle-
based mechanism, which enables all routers to easily verify puzzle
solutions and uses the existing DNS infrastructure to disseminate
trustworthy and verifiably fresh puzzle challenges (Section 3.4). By
enforcing per-computation fairness in the request channel, Portcullis
severely limits the attacker’s flooding rate.

In order to provide per-computation fairness, the Portcullis puz-
zle system needs the following properties:

• Authenticity: Any host or router can verify the authenticity
of a puzzle challenge and the correctness of the solution.

• Availability: The puzzle distribution service must be dis-
tributed and highly robust.

• Freshness:A solution to a puzzle must indicaterecentcom-
putational effort.

• Efficiency: Routers must be able to quickly verify the cor-
rectness, authenticity, and freshness of a puzzle solution.

• Granularity: The puzzles should allow clients to demon-
strate various levels of computational effort.

3.1 Assumptions and Threat Model
We assume space in the request packet header to encode capa-

bilities, puzzles, and puzzle solutions. Because request packets
represent a tiny fraction of data traffic, puzzle data represents a
negligible amount of overhead.

In our threat model, we assume endhosts may be compromised
and collude with each other. We also assume that malicious routers
may assist the DoC attack, though we note that a malicious router
on the path between a legitimate sender and receiver can always
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Figure 1: Hash Chain. The seed generator repeatedly hashes a
random valueh0 to create a series of seed values. The hash-chain
anchor, hn, is signed and released. As time advances, additional
seeds are released in reverse order. An authentichn can be used
to authenticate later seedshi by repeatedly hashing thehi value.
If this process produceshn, then thehi value is authentic.

simply drop packets. We do not assume trust relationships between
routers and receivers, nor among the routers themselves. Thus,
each router makes decisions independent of other routers.

3.2 Design Overview
The seed generatoris a trusted entity that periodically releases

seedsthat senders can use to create puzzles. Senders obtain seeds
from a seed distribution service, which need not be trusted. The
puzzle generation algorithmis a public function for generating a
puzzle based on the most recent puzzle seed and flow-specific in-
formation. Each puzzle solution is associated with apuzzle level.
The puzzle level represents the expected amount of computation
required to find a solution to the puzzle.

When a sender wishes to set up a prioritized flow, it obtains the
latest seed from the seed distribution service and generates a puzzle
using the puzzle generation algorithm. The sender then computes
the solution to the puzzle. It includes the puzzle and solution in the
header of the request packet. The routers verify the authenticity of
the puzzle and the solution, and give priority to requests containing
higher-level puzzles.

3.3 Seed Generation
The seed generator periodically releases a new seed for senders

to use in creating puzzles. The seeds are released through the seed
distribution service described in Section 3.4. The seeds must be
unpredictable (i.e., it is computationally infeasible to guess future
seeds based on previous seeds), and efficiently verifiable (i.e., one
can easily confirm that a seed is from the seed generator).

Unpredictable and efficiently verifiable seeds can be implemented
as follows. The seed generator randomly picks a numberh0, and
uses a public hash functionH to compute a hash chain of length
n starting ath0, i.e., hk+1 = H(hk||k) (see Figure 1). To prevent
attacks against the hash chain,H should be a cryptographic hash
function providing pre-image resistance and second pre-image col-
lision resistance. The seed generator digitally signs the hash-chain
anchor (the last value on the hash chain)hn and releases the sig-
nature,SIGN(hn). Since hash chains can be of arbitrary length and
yet stored efficiently, hash-chain anchors are released infrequently,
e.g., once a year.

Every t minutes, the seed generator makes a new seed available
in the form of a value from the hash chain in reverse order (that is,
valuehi+1 is released beforehi). Senders obtain the current seed
from the seed distribution service and include it in their capability
requests. The authenticity of the newly released seed can be veri-
fied by hashing it and comparing the result with the seed released
in the previous time slot. For example, during the first time slot a
sender would include seedhn−1 in a packet. Any router can verify
the authenticity ofhn−1 by checking thatH(hn−1||n−1) equals the
hash-chain anchorhn.

3.4 Seed Distribution Service
The seed generator provides puzzle seeds to the seed distribu-

tion service, which makes them available to clients. A client con-
tacts the seed distribution service to obtain the latest seedhi . This
seed is used to create puzzles (using the algorithm described in Sec-
tion 3.5) for connections made during the nextt minutes.

The seed distribution service also allows routers and senders to
obtain the hash-chain anchorhn needed to verify subsequent seeds.
This yearly operation is the only time that routers need to contact
the seed distribution service. To simplify routers, an ISP could
have one or more non-router hosts contact the seed distribution ser-
vice once a year and participate in an intradomain routing protocol.
These hosts verify the authenticity of the signature onhn, and then
use the routing protocol to disseminatehn to all of the ISP’s routers.
Because the anchor is small (approximately 80 bits), it could easily
fit within a special field of a routing update.

In general, puzzle seed distribution could be handled by any dis-
tributed and well-provisioned set of servers. While using a pri-
vately operated content distribution network (CDN) is one viable
approach, the simple nature of the puzzle seed and hash root data
makes the existing DNS infrastructure an attractive choice.
Seed Distribution Via DNS. In our DNS-based puzzle distribu-
tion design, one or more sets of global top-level domain (gTLD)
servers store a DNS record for both the most recent puzzle seed as
well as the signed root hash value. gTLD servers (e.g., the resolvers
for the .com domain) are already highly provisioned and widely
replicated because a successful DoS attack against these servers
would make many network services unavailable.

Taking the example of the .com gTLD servers, in addition to stor-
ing all NS records for domains within .com, each server could have
records for the special domains puzzleseed.com and anchor.com.
These records would be of type TXT and would contain text-encoded
values of the latest puzzle seed and hash-chain anchor (with signa-
ture). Both values are small enough to fit into a single UDP data-
gram. Use of the text record means local DNS servers require no
modifications to query for or cache this data.

Figure 2 illustrates a sample implementation. Once a year, the
seed generator run by a trusted party (e.g., ICANN) computes a
hash chain and publishes the hash-chain anchor, as well as a signa-
ture on the hash-chain anchor, as a DNS record (see Figure 2(a)).
Hosts and routers can perform a standard DNS query to retrieve this
record, verify the signature, and store the hash-chain anchor value
for the following year.

Once everyt minutes, the seed generator inserts a new puzzle
seed into DNS. To obtain the latest seedhi , a client performs a
standard DNS query, shown in Figure 2(b). Based on the seed,
the client computes a puzzle (as discussed in Section 3.5), solves
the puzzle, and includes the puzzle seed and solution in its ca-
pability setup packet. Note that a single seedhi can be used to
create puzzles for connections to multiple servers (e.g., download-
ing web content from multiple hosts would only require a single
DNS query for the latest puzzle seed), though for each server under
DDoS attack, the client must generate and solve a different puzzle.
Routers receiving the setup packet can verify the authenticity ofhi
usinghn (or the most recently authenticated seed value, e.g.,h j for
i < j ≤ n), and verify the puzzle solution using Equation 1.

If a body like ICANN is in charge of seed generation, it could
easily include the task of puzzle distribution as part of the contracts
it already establishes to run gTLD servers for domains like .com.
Since providers of large and distributed DNS infrastructures such
as Akamai often contain records for popular sites with TTLs of
only a few minutes, updating this infrastructure to release a fresh
puzzle seed on the order of 2–10 minutes would be quite feasible.
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Figure 2: Puzzle Distribution Via DNS. (a) Once a year, a trusted seed generator (S) publishes the anchor value hn of a hash chain,
along with a signature onhn, as a DNS record. By performing a DNS lookup on a well-known name, clients and routers can obtain this
record. (b) To establish a capability, the client performs another DNS request. The resulting DNS record contains the current puzzle
seed,hi . The client creates a puzzle based onhi and includes the puzzle solution (x) it its setup packet. The router first verifies the puzzle
seedhi by repeatedly hashing it to gethn. In most cases, the router will have already seenhi and hashing will be unnecessary. Finally,
the router uses Equation 1 to verify the puzzle solution.

DNS TTLs allow ISPs to correctly cache the seeds if possible
and answer client requests with no additional complexity. While
recent work suggests that approximately 14% of local DNS servers
violate the DNS standard by ignoring TTL values [23], adding an
expiration time to the puzzle seed record allows clients to detect
stale data and query the gTLD server directly for a fresh record.

Portcullis should not significantly increase the load on the DNS
infrastructure for two reasons. First, we expect legitimate senders
to request puzzle seeds only when contacting a destination under
DoS attack. Second, studies of the behavior of local DNS resolvers
from a moderately-sized academic institution [18] show that such
local servers contact root and gTLD servers over 600,000 times per
week. In contrast, even if puzzle seeds changes every 5 minutes
and sources in a domain experience constant DDoS attacks for the
entire duration of the week, the puzzle queries would increase the
number of gTLD DNS queries from that domain by only 2,000
(e.g., less than 0.34%).

Additionally, a DoS attack on DNS does not affect Portcullis
unless a simultaneous DoS attack is launched against a particu-
lar destination. An adversary able to deny DNS access to clients
can already paralyze communication, and systems such as Con-
fiDNS [24] can allow users to quickly and securely circumvent at-
tacks on local DNS resolvers. Note that a DNS-based implementa-
tion does not require secure DNS, nor does it require DNS servers
to perform any cryptographic operations or in any other way devi-
ate from normal operation. The hash-chain anchor is authenticated
by the signature accompanying it, and subsequent puzzle seeds are
authenticated based on the hash-chain anchor.

3.5 Puzzle Generation Algorithm
When an endhost decides to establish a connection, it acquires

the latest random seedhi from the seed distribution service. The
sender then chooses a random 64-bit noncer and computes a flow-
specific puzzle as follows:

p = H(x||r||hi ||dest IP||ℓ) (1)

To solve the puzzle at difficulty levelℓ, the sender finds a 64-bit
valuex such that the lastℓ bits of p are all zero. The sender in-
cludesr, hi , ℓ, and a puzzle solutionx in each request packet. It
need not includep, since the router will regenerate it during puzzle
verification. Assuming the publicly-known hash functionH is pre-
image resistant and has a good distribution over its range, a sender

must resort to a brute-force approach by trying random values ofx
to find a solution for the chosen level.

We intentionally do not make hash puzzles depend on the source
IP address. Including the source address causes problems for hosts
behind NATs or proxies, yet does little to prevent attackers from
sharing puzzles because an attacker can simply spoof its IP ad-
dress. To limit puzzle sharing, routers drop duplicate puzzles (we
discuss how Portcullis is effective despite attackers sharing puzzles
in Section 5.1). Since routers drop duplicate puzzles, senders are
motivated to chooser at random. However, the input to the hash
does include the destination IP address, which prevents an attacker
from reusing the same puzzle to attack multiple destinations (unlike
source information, the destination address cannot be spoofed). We
also include the difficulty level of the puzzle in the hash computa-
tion to prevent an adversary from reusing computation for a hard
puzzle as a solution for an easy puzzle. In other words, if the ad-
versary attempts to solve a level 7 puzzle, she may discover viable
solutions for puzzles at level 1-6. If we did not includeℓ, an at-
tacker could expend the computational effort to find a solution to
a level 7 puzzle, and receive solutions to lower-level puzzles “for
free”. Committing toℓ by including it in the hash prevents this.

3.6 Puzzle Verification by the Router
Because puzzle seeds are included in each packet and can be ver-

ified with the hash-chain, routers only need to update their hash ver-
ification state when a new hash-chain begins (e.g., yearly). When a
router receives a packet that includes a puzzle solution, it first ver-
ifies the authenticity of the seedhi for the puzzle. The authenticity
of hi can be verified by computingH(hi ||i) and comparing it with
the seed released in the last time slot (hi+1). If traffic arrives spo-
radically at a router, the router may need to hashhi several times
and compare each value with a previous seed seen by the router
to verify its authenticity. However, since each seed is valid fort
minutes, a new seed need only be verified a single time, and verifi-
cation can consist of a simple equality check for the remainder of
the period.

To verify the puzzle solution, the router computes the same hash
shown in Equation 1, using the noncer, the seedhi , the sender-
supplied solutionx, and the destination IP in the request packet.
The router accepts the puzzle solution if the lastℓ bits of p are
zero. With Portcullis, the router only needs to compute a single
hash to verify the solution to a puzzle.
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3.7 Router Scheduling Algorithm
The router’s request channel scheduling algorithm should: 1)

limit reuse of puzzle solutions, and 2) give preference to senders
who have solved higher-level puzzles.

When requests arrive at a router, the associated puzzle is first
verified for correctness. To prevent exhaustion attacks, only cor-
rect puzzle solutions and their input parameters are entered into a
Bloom filter [6] configured to detect the reuse of puzzle solutions
seen in the past periodt. Each puzzle is uniquely identified by the
tuple (r,hi , ℓ,dest IP). Sincer is chosen randomly from 264 pos-
sible values, the space of potential puzzles for a given destination
address is quite large, and the probability of multiple legitimate
clients using the same puzzle for capability setup within the win-
dow of eligibility t for hi is negligible.

Bloom filters support a tradeoff between router state and the
probability of incorrectly dropping a unique solution. They provide
compact lookups, have no false negatives, and allow false positive
probabilities to be driven to arbitrarily low rates with the use of ad-
ditional memory. To illustrate this, consider a router with a 2 Gbps
link on which 5% of the capacity is allocated to capability requests
and a circular buffer ofF Bloom filters, where each filter contains
all puzzles seen over a one second period. The router may receive
80,000 requests/sec, with each of theF filters being checked to see
if a puzzle is duplicated. Ifk different hash functions are used,
insertingn puzzles into a single table of sizem bits gives a false

positive probability of approximately(1−e
kn
m )k. With an optimalk

value, this can be estimated as(0.6185)
m
n . Thus, a filter of 300 KB

can prevent duplicates for one second with a false positive proba-
bility of under 1

106 per packet. A circular buffer configuration ofF
Bloom filters can therefore filter traffic forF seconds with less than
a (1− (1− 1

106 )F ) ≈ F
106 false positive probability per packet.

If a request clears the Bloom filter check, the router places it in
a priority queue based on its puzzle level. Otherwise, the router
drops the request packet.

3.8 Legitimate Sender Strategy
We now briefly outline the puzzle-solving strategy used by a le-

gitimate sender. Later in Section 4 we precisely define this strategy
and prove that it will, with high probability, allow the sender to es-
tablish a capability, regardless of the attacker’s power or strategy.
We assume that the legitimate sender has neither knowledge of the
amount of congestion on the path to the DDoS victim, nor knowl-
edge of the attacker’s power or strategy (though a sender with some
or all of this information can further optimize her strategy). Essen-
tially, a legitimate sender will compute a solution to the lowest-
level puzzle and transmit a request. If the request fails, the sender
solves a puzzle that requires twice the computation of the previous
puzzle and sends a new request packet. The sender continues to
double her computational effort until she succeeds in establishing
a capability.

3.9 Overhead Analysis
Packet Overhead. We use 64 bits to represent the puzzle solu-
tion x. Hence the highest level puzzle would require approximately
263 hash computations. Contemporary PCs can compute approx-
imately 220 cryptographic hashes per second. Hence we expect
that these puzzles will remain computationally difficult for years to
come. We use 6 bits to denote the puzzle levelℓ. The 64-bit noncer
is sufficient to distinguish between different sources connecting to a
particular destination within a time intervalt. We usehi = 80 bits to
represent the puzzle seed. Hence we need approximately 27 bytes
to encode the puzzle and puzzle solution in the packet header. This
small overhead can be piggybacked on any other data that might be

included in the request packet, such as for TCP connection estab-
lishment. Because this overhead need only be incurred on request
packets and request packets constitute a small fraction of the total
amount of traffic, an extra 27 bytes should be acceptable.
Puzzle Verification Overhead. In analyzing the impact of puz-
zle verification on routers, it is important to note that only a fraction
of a router’s capacity is devoted to capability setup traffic, suggest-
ing that puzzle verification need not necessarily operate at full line
speed. Nonetheless, minor hardware improvements would easily
allow routers to verify puzzles at line speed. The additional hard-
ware could be incorporated into new generations of routers or de-
veloped as modules to extend older routers. Within an AS, only
the border routers need to verify puzzles, setting or clearing a bit
in the header that internal routers can use to determine if a puzzle
solution is valid. As we show in Section 6, even if the victim’s
ISP is the only entity to upgrade its routers, the victim still receives
substantial benefits.

Commercially available ASIC [15] and FPGA [16] cores for
SHA-1 are capable of performing these hash functions at well over
1Gbps in a small amount of space. For example, the ASIC imple-
mentation of SHA-1 only requires 23,000 gates, whereas a typical
ASIC has millions. Similarly, the FPGA implementation takes 577
slices, where a typical FPGA has tens of thousands of slices. Be-
cause multiple puzzles can be verified in parallel, the use of several
SHA-1 cores on a single ASIC or low-cost FPGA could handle
line-speed puzzle verification, even for several OC-192 links. In
fact, the greatest limitation to using a single chip for puzzle verifi-
cation is the available bandwidth for bringing data on and off the
chip. In addition, the latency introduced by each verification will
be low, since verifying each puzzle involves computing a function
over less than 50 bytes. Hence when the hash function operates at
1Gbps, verifying a puzzle will introduce well under 1µs of latency.

Routers could also perform puzzle verifications in software. Since
a modern PC can perform 220 SHA-1 computations per second
(see Section 7.1), a software implementation could support approx-
imately one million request packets per second.
Router Scheduling Overhead. The router scheduling algorithm
used by Portcullis requires several hash computations for the Bloom
filter. These can be computed in parallel, even for a single packet,
and as discussed above, hash computations can be implemented
very efficiently in hardware. Again, we only apply this algorithm
to request packets, which constitute a small fraction of a router’s to-
tal bandwidth. If every router dedicates 5% of its bandwidth for the
request channel, a software implementation is sufficient to support
a gigabit link, and a hardware implementation can easily handle
faster line-rates.

4. THEORETICAL FAIRNESS ANALYSIS
In this section, we prove two main results. First, allocating ser-

vice based on per-computation fairness provably guarantees that
a legitimate sender can establish a capability with high probabil-
ity, regardless of an attacker’s resources or strategy. This guarantee
holds even if the legitimate sender has no information about current
network conditions or the adversary’s resources. Second, assum-
ing that routers cannot independently distinguish legitimate clients
from malicious ones, we prove a lower bound indicating that no
system can improve on this guarantee.

4.1 Assumptions and Problem Definition
Assumptions. We assume that routers cannot independently dis-
tinguish packets from legitimate and malicious senders. We allow
all attackers to collude, jointly compute puzzles, and synchronize
their floods, but we assume they have bounded resources, though
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the bound on their resources need not be known to the legitimate
senders. To simplify the analysis, we assume that all endhosts have
the same hardware configuration and hence, equal computational
resources. Finally, we consider network latency negligible relative
to the sender’s puzzle computation time.
Problem Definition. We consider a scenario with a single bot-
tleneck router. Request packets from different sources arrive atthe
bottleneck router, but the remainder of the network has infinite ca-
pacity. Thus, a packet can only be queued at the bottleneck router.

For the purposes of the DoC attack, the adversary controlsnm
compromised endhosts. We discretize time into small time slots
and assume that a single legitimate sender starts a connection setup
process at an arbitrary point in time between(0,∞).

We considerR, a class of router scheduling policies withfinite
output bandwidth, i.e., a router outputs a maximum ofγ requests in
each time slot. Under router policyR∈ R, we defineG R to be a
class of strategies for a legitimate uninformed sender. The sender is
uninformedin the sense that it is not required to know the real-time
condition of the network or the adversary’s computational capacity
or strategy.

Under router policyR∈ R, and legitimate sender strategyG ∈
G R, we defineA R,G(nm) to be the class of adversary strategies
usingnm compromised machines. Thus, the adversary is aware of
the legitimate sender’s strategy, though it does not know when the
legitimate sender will begin. The adversary’s goal is to maximize
the connection setup time for the legitimate sender.

We definet(R,G,A(nm)) as the expected connection setup time
for a legitimate sender, assuming a router policyR∈R, a legitimate
sender’s strategyG ∈ G R, and an adversaryA(m) ∈ A R,G(nm) in
control of nm compromised machines. The setup time is the time
that elapses from when the sender starts sending request packets,
until the moment a request packet is successfully received at the
destination.

Finally, we define the Portcullis router scheduling policy and the
Portcullis legitimate sender’s policy.
DEFINITION 1: PORTCULLIS ROUTER SCHEDULING POLICY, R0
Each request carries an unforgeable proof of the amount of com-
putation performed by the sender. In each time slot, if no more
than γ requests arrive, the router outputs all of them; otherwise,
the router preferentially outputs requests carrying larger amounts
of computation and drops any remaining requests.
DEFINITION 2: PORTCULLIS LEGITIMATE SENDER POLICY, G0
The legitimate sender continues to send request packets until one
transmits successfully; on the ith attempt, it attaches a proof ofχ ·
2i−1 computation, whereχ represents the amount of computational
effort an endhost can exert in a single unit of time.

4.2 Main Results
The first result demonstrates that using Portcullis, a sender can

always successfully transmit a packet in time bounded by the amount
of attacker computation:

THEOREM 4.1. Under the Portcullis router scheduling policy
R0, a legitimate sender utilizing the Portcullis sending policy G0 ∈
G R0 to traverse a bottleneck link under attack by nm malicious hosts
successfully transmits a request packet in O(nm) amount of time in
expectation, regardless of the strategy employed by the adversary.

Our second result states that for any scheduling policy, and any
sending algorithm, a legitimate sender cannot perform better than
the guarantee provided by Theorem 4.1:

THEOREM 4.2. ∀R∈ R, ∀G∈ G R, ∃A(nm) ∈ A R,G(nm) such
that the expected time for a legitimate sender to successfully trans-
mit a request isΩ(nm).

4.3 Proofs
Given the definition ofR0, we first prove the following lemma,

which we use in our proof of Theorem 4.1.

LEMMA 4.3. Assume routers adopt the Portcullis scheduling
policy R0. Let φ denote the total amount of computational re-
sources controlled by the adversary, (φ = nmχ , where χ is the
amount of computational effort a single endhost can exert in a sin-
gle unit of time). If the legitimate sender attaches a proof ofφ/γ +δ
computation to a request packet (whereδ > 0 andγ is the number
of requests output by the bottleneck router in each time slot), then
regardless of the adversary’s strategy, the request packet success-
fully transmits with probability at least δ

φ/γ+δ .

COROLLARY 1. If the legitimate sender attaches a proof of2φ/γ
computation (i.e.,δ = φ

γ ) to a request packet, the request packet
succeeds with probability at least 1/2.

Before proving Lemma 4.3, we offer some insight into the result.
Intuitively, to prevent the successful transmission of a legitimate re-
quest in a particular time slot, an adversary needs to send at least
γ requests in the same time slot, each containing a larger proof of
computation than the legitimate request. If the adversary wishes to
sustain a flood rate ofγ in the long run, she can afford to put no
more thanφ/γ computation into each request. Alternatively, the
adversary can flood at rateγ in a fractionp of the time and attach
φ/(γ · p) amount of computation to each request. Lemma 4.3 states
that if the legitimate sender is aware of the adversary’s total com-
putational resourceφ and the bottleneck bandwidthγ, it benefits
the sender to attach a proof of slightly more thanφ/γ computation
to its request. As a result of this strategy, the request successfully
transmits with non-negligible probability, no matter what strategy
the adversary uses. Corollary 1 is a special case of Lemma 4.3. If
the legitimate sender performs 2φ/γ computation on a request, the
request gets through with probability at least 1/2.

Proof of Lemma 4.3: Assume the sender puts a request packet on
the wire in theith time slot, and attaches a proof ofφ/γ + δ com-
putation to the request packet. To prevent this request from getting
through, the adversary needs to inject at leastγ requests in theith

time slot, and each request packet should contain at leastφ/γ + δ
amount of computation. Since the adversary has a total amount of
computational resourcesφ , if she wishes to flood with at leastγ re-
quests, each carrying a proof of at leastφ/γ +δ computation, then

she can do so during no more than a fractionpf =
φ/γ

φ/γ+δ of the
time. Because the legitimate sender puts a packet on the wire at a
random point of time, its probability of success is 1− pf = δ

φ/γ+δ .

With Lemma 4.3, it is straightforward to prove our two main re-
sults. Note that the Portcullis sending policy does not require the
sender to know the adversary’s strategy, nor the number of ma-
chines employed by the adversary.

Proof of Theorem 4.1: After k = O(lognm) attempts (for some
k), the sender will try a request packet carrying a proof of 2φ/γ =
2χnm/γ computation. Applying Lemma 4.3 withδ = φ/γ, this
request has probability at least 1/2 of arriving successfully. To
compute the expected time until a request succeeds, we note that
the time spent solving the puzzle for attemptk+ i is (2φ/γ)2i . Fur-
thermore, the probability that attemptk+ j fails for any j (which
is relevant only if attemptsk throughk+ j −1 also fail) is at most
1/2 j . Hence, the probability that attemptsk throughk+ i −1 fail
andk+ i succeeds is at most 1/2i(i−1). Thus the series for the ex-
pected time converges toO(φ/γ) = O(χnm/γ).
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Proof of Theorem 4.2: Divide the compromised machines evenly
into τ = nm/2γ groups, each of size 2γ. Starting at time 0, theith

group is activated during theith time slot. Each compromised ma-
chine follows the legitimate sender’s algorithm for setting up a con-
nection. Regardless of whether a compromised machine is able to
set up a connection, it stops afterτ time slots and restarts the legit-
imate sender’s algorithm. Because the bottleneck router can only
output γ requests per time unit, the expected time for each com-
promised machine to set up a connection is at leastm/2γ − τ/2 =
nm/4γ. Since routers cannot independently distinguish a legitimate
request from a malicious request, and a compromised machine uses
the same algorithm as a legitimate sender, by symmetry, a legiti-
mate sender requiresΩ(nm) time slots to establish a capability.

5. POTENTIAL ATTACKS
In this section, we analyze other potential attacks and explain

how Portcullis defends against them.

5.1 Attacks by Malicious Endhosts
Sharing Puzzle Solutions. Malicious endhosts may compute
puzzle solutions and share them with other colluding nodes. Per-
haps counter-intuitively, sharing puzzle solutions is not very effec-
tive at increasing attack power, because the attacker has no more
power to congest any single link in the network than it did before.

Even if all endhosts share puzzle solutions and target a bottle-
neck link, they cannot break our basic fairness guarantee (Sec-
tion 4), because Portcullis routers discard duplicate puzzle solu-
tions. Hence, no matter how many times an adversary sends a puz-
zle solution on the same link, she will only receive prioritized band-
width proportional to the amount of computation she performed.

The attacker can also use the same puzzle to attackdifferent links
simultaneously. Yet this has little effect on our calculated amount
of work per-client, which was based solely on the combined CPU
capacity of all malicious hosts and the capacity of the bottleneck
link on the path between the client and the destination. Essentially,
for any particular client the puzzle-sharing scenario is no different
than if all attacking hosts had computed on behalf of a single host
that was capable of flooding that client’s bottleneck link to the des-
tination. Since we already incorporate this case into our analysis,
the guarantees provided by Portcullis still hold.

However, an adversary may reuse puzzle solutions over sub-
intervals of the puzzle-seed validity windowt to target multiple
links on a single network path atdifferent times. With precise tim-
ing, proper network vantage points, and the attack bandwidth to
overwhelm core links, an adversary can reuse puzzles to keep at
least one link on the path saturated at all times with puzzle solutions
at a level higher than she could sustain without reuse. However, in
practice this attack advantage is linearly bounded by the number of
individual links the attacker can saturate with packets that do not
traverse earlier links in the path, where they would be detected as
duplicates. Additionally, because the attack is path-specific, affect-
ing most clients requires an adversary to possess significant attack
resources in or near the victim’s own network.
Timing Amplification. Sections 4 and 6.2 describe an opti-
mal attacker strategy, assuming the attacker wishes to delay all
senders equally. However, an attacker can also spend more time
(than strictly optimal) computing, and hence send requests with
higher-level puzzles during short periods of time. Nonetheless,
these bursts of packets do not affect the average time to establish
a capability, since the extra computation time leaves a window in
which the adversary is not sending packets, allowing some legiti-
mate senders to quickly succeed using very low-level puzzles.

5.2 Attacks by Malicious Routers
Clearly no DoC-prevention scheme can prevent a malicious router

from dropping capability request packets forwarded through that
router. As a result, we only consider attacks where a malicious
router seeks to flood or help malicious endhosts flood the request
channel of a remote network link.4 For instance, the malicious
router can fail to enforce rate regulation in the request channel, or
it can use its own packets to attack the request channel. With a par-
tial deployment, the malicious router can potentially congest the
request channel of a downstream legacy link. However, as soon as
the request packets traverse a legitimate Portcullis-enabled router
downstream, the attack traffic is subject to regulation based on per-
computation fairness. Hence Portcullis achieves graceful perfor-
mance degradation in the face of such a partial deployment attack.

6. EVALUATION
In this section, we describe the details of our simulations. We

evaluate both simple flooding DoC attacks and Portcullis-aware
DoC attacks. We also compare Portcullis with previous architec-
tures, in both full and partial deployments.

6.1 Internet Scale Simulation
We simulate the benefits of the per-computation fairness pro-

vided by Portcullis using an Internet-scale simulation. The topol-
ogy for this simulation is derived from CAIDA Skitter probe re-
sults [7], which record router-level topology. The Skitter map forms
a tree rooted at the trace source (a root DNS server) and spans out
to over 174,000 networks scattered largely uniformly across the In-
ternet. We use the identical topology, but reverse the direction of
packet flow such that packets from clients (both legitimate and at-
tackers) flow up the branches of the tree to the root, which in our
scenario is the victim. We make the conservative assumption that
a single link connects the victim to the rest of the network. Multi-
ple links would increase the difficulty of a DDoS attack, since an
attacker would have to flood all of the links to deny service to le-
gitimate clients. This realistic topology is essential to evaluate the
performance of TVA [32], which depends on topology to help it
differentiate legitimate traffic from attack traffic.

Since the Skitter map does not include bandwidth measurements,
our simulations employ a simple bandwidth model in which the
senders’ uplinks have one tenth the capacity of the victim’s network
connection, while the rest of the network links have 10 times that
of the victim’s network connection. Thus, each host has a small
link connecting it to a well provisioned core that narrows down to
reach the victim. Experiments using a uniform bandwidth model
produced similar results, though Portcullis performed even better;
space constraints prevent us from including these results.

To make these values concrete, sender’s uplinks have a total ca-
pacity of 20 Mbps, the victim’s link to the rest of the network has a
total capacity of 200 Mbps, and the core links are 2 Gbps. Assum-
ing each request packet is approximately 1000 bits, and each link
reserves 5% of its capacity for request traffic, an attacker can flood
its uplink’s request capacity by sending requests at 1 Mbps.

In our experiments, we measure the time each of 1,000 legiti-
mate clients requires to establish a capability. We vary the number
of attackers from 1,000 up to 20,000 (thus allowing the attackers to
significantly outnumber the legitimate senders). For the Random,
TVA, speak-up, and Portcullis-Flooder scenarios, attackers send re-
quests at the full request capacity of their uplink. Both legitimate
clients and attackers are placed randomly in destination networks.

4Flooding a link controlled by the router itself is essentially the
same as dropping packets; hence it is out of the scope of this paper.
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Figure 3: Portcullis Attacker Strategies. The ideal strategy is
indicated by the top line, representing an attacker who spends all
of her CPU resources to create just enough packets to saturate
the victim’s 10 Mbps link to the network. The Flooding attacker
represents a traditional attacker who simply floods the network
with legacy packets. Both the Flooding attacker and the attacks
that fail to fill the victim’s link (i.e., collectively sending requests
at 2.5, 5.0 or 7.5 Mbps), have virtually no effect on capability
establishment time, even for large numbers of attackers.

The exact strategies used by both attackers and clients are varied
in the course of the experiments, and are explained in detail be-
low. For experiments involving puzzle computation, we assume all
client machines have equal computational resources. The puzzle
difficulty levels are adjusted such that solving a puzzle at levelℓ re-
quires the sender to spend 10·2ℓ−1 milliseconds computing. When
testing Portcullis, legitimate senders employ the Portcullis sending
policy from Section 4.1. In other words, a legitimate sender will
compute for 10 ms, and send a request at puzzle level 1. If that re-
quest fails, the sender will compute for 20 ms and send a request at
level 2, etc., until she receives a capability. In all experiments, we
delay the time at which legitimate senders begin sending requests
until after the traffic from the attackers reaches a steady-state. Thus,
legitimate senders face the full brunt of the DoC attack.

6.2 Portcullis Attacker Strategies
The optimal attacker strategy in network DDoS attacks today is

simply to target bottleneck links near the victim with as many pack-
ets as possible in order to decrease the probability of a legitimate
packet finding space in a router’s queue. However, with Portcullis
the choice of attacker strategies is more subtle, as the attacker must
decide whether it is better to send many low priority packets, or
fewer packets each with higher priority.

We assume that attackers can pool their CPU resources to col-
lectively solve puzzles in order to maximize the power of their at-
tack. As we discussed in Section 5, sharing puzzle solutions does
not significantly impact legitimate senders, so our simulation as-
sumes that all puzzle solutions are unique. As our analytical results
demonstrate, the ideal attacker strategy is to send the highest pri-
ority puzzles possible while still saturating the victim’s bottleneck
link(s). Figure 3 illustrates this, where the ideal strategy (top line)
is for the attackers to collectively send requests at 10 Mbps (the re-
quest capacity of the victim’s network link) and devote their pooled
CPU resources to computing the hardest puzzles possible for those

requests. To send more than 10 Mbps, an attacker must devote less
CPU power to each puzzle, lowering the computational threshold
for legitimate senders. Sending requests with higher puzzle levels
means that the attacker does not have the CPU resources to saturate
the link. Thus, legitimate packets reach the victim even when they
are of lower priority than attack traffic.

This graph powerfully demonstrates results presented analyti-
cally earlier in the paper: even when attackers cooperate to com-
pute puzzles, a legitimate client can quickly increase its level of
puzzle difficultly until the collective CPU power of the adversary
is insufficient to keep the link saturated with equally difficult puz-
zles. Wait times are approximately 8 seconds, even with 20,000
attackers using an optimal strategy.

6.3 Comparative Simulations
Our second set of simulations compare Portcullis, TVA [32],

speak-up [26], and a simple random-drop “legacy” forwarding scheme
on the same Internet-scale topology. For the Portcullis simulations,
we show both an attacker who employs the optimal puzzle-solving
strategy discussed above, as well as an attacker that simply floods
packets without solving puzzles.

With TVA, each router performs queuing based on the ingress
point of the packet into the current AS. Because the Skitter maps
do not include AS information, we use the Team Cymru “IP to
ASN” service [9], which creates mappings based on a diverse set
of BGP feeds. For the less than 2% of router IPs that did not suc-
cessfully map to an AS, we consider that router to be a member
of the most recent known AS in the path. These mappings result
in an average AS-path length of approximately 4.1, which is only
slightly less than the average length of 4.5 determined by previous
measurement work [2]. Since TVA does not specify a value for
source retransmission rates of request packets, we use a highly ag-
gressive retransmission rate of one packet/10ms for TVA clients. In
practice, such a high rate for legitimate senders may cause conges-
tion for traffic to alternate destinations, but in this simulation the
higher transmission rate is strictly better for TVA.

For speak-up, both legitimate and malicious senders saturate their
uplinks with request packets. In the randomized dropping (legacy
router) scheme, each router simply chooses packets randomly from
its incoming queue until its outgoing queue reaches capacity, drop-
ping all remaining packets.

Figure 4 compares the speed with which 1,000 legitimate clients
acquire a capability when using various defense mechanisms. The
graphs represent different numbers of attackers (1,000 and 20,000),
which are representative of our results for different numbers of at-
tackers in between. Note that the x-axis uses a logarithmic scale.

The two lowest lines represent TVA and the randomized-drop
router strategy. With both strategies, many clients fail to acquire a
capability within the simulation period of 100 seconds when faced
with 20,000 attackers. A full Internet topology greatly reduces
the benefits of TVA, because with each AS hop, legitimate traffic
“mixes” and becomes indistinguishable from attack traffic with re-
spect to TVA’s priority mechanism. In fact, if each AS hasi ingress
points, and there areλ AS hops, the likelihood of a packet suc-
cessfully reaching the destination scales with the inverse ofiλ−1

when the number of attackers is large. That is, loss rates with TVA
are heavily topology-dependent because they are exponential in the
number of AS-hops contained in the network path. On realistic
topologies, this mixing of traffic results in performance that is sim-
ilar to the randomized best-effort transmission of request packets.
The original analysis of TVA [32] did not show this effect because
their simple topology contained only a single hop before the bottle-
neck link, meaning that no mixing of good and bad traffic occurred.
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Figure 4: Capability Setup Time. Cumulative distribution functions of the time required for a legitimate sender to acquire a capability
when faced with1,000 attackers (left) and20,000 attackers (right). The Portcullis Puzzle Solver attacker uses the optimal strategy
discussed in Section 6.2. Note that the x-axis uses a logarithmic scale.

Speak-up hosts gradually establish capabilities, but a significant
portion (20%) take half a minute or more to succeed. Speak-up’s
performance declines as the number of attackers increases, since
the attackers have more bandwidth relative to the legitimate senders.

The Portcullis-Flooder line in Figure 4 demonstrates that Portcullis
provides clear benefits if the attacker naively uses the same flood-
ing strategy used against TVA. But what happens when the attacker
is smart and harnesses all of its computational power to compute
puzzles using an optimal strategy?

As we see in Figure 4, Portcullis guarantees legitimate clients
the ability to achieve fairness regardless of topology, even if the
attacker uses the ideal puzzle computation strategy. In contrast,
TVA cannot offer a legitimate client real fairness once its traffic
mixes with the higher-rate attack traffic. Portcullis’s performance
illustrates the benefits of a scheme that is orthogonal to topology.

The threshold-style shape of the line for the puzzle-solving at-
tacker scenario illustrates the puzzle scheme’s operation. Legiti-
mate senders start with low-level puzzles that cannot compete with
the attacker’s high-level puzzles. However, legitimate senders con-
tinue to increase their puzzle levels until they receive a capability.
When legitimate senders reach the puzzle level employed by the
attacker, some portion of their packets are randomly selected and
reach the victim, creating the first jump in the percentage of capa-
bilities established. If a legitimate sender’s packet does not make
it through, the sender must spend time computing a new puzzle at
a higher puzzle level. The higher puzzle level of this next packet
guarantees that it receives priority over the attacker’s packets, and
hence the rest of the legitimate senders can establish capabilities.
Thus, the distance between the two “surges” represents the time
spent computing the higher-level puzzle.

6.4 Partial Deployment
While the previous experiments assume a complete deployment

scenario, we also run simulations to evaluate the effectiveness of
Portcullis in partial deployment. We focus on the performance for
an early adopter, so in our simulations, only the victim’s ISP up-
grades its routers. We define the victim’s ISP to encompass the
victim’s link to the network, plus the next three hops on paths lead-
ing out from the victim. The remaining routers simply randomly
choose among incoming packets.

0.1 1 10 100
Time (s)

0

20

40

60

80

100

%
 C

ap
ab

ili
ty

 E
st

ab
lis

he
d Portcullis - Flooder

Portcullis - Puzzle Solver
Speak-up
Random
TVA

Figure 5: Partial Deployment. Time to establish a capability
versus 20,000 attackers when only the victim’s ISP upgrades its
routers. Again, the x-axis employs a logarithmic scale.

Figure 5 summarizes our results for 20,000 attackers (the re-
sults look similar for 1,000 attackers). The speak-up and Ran-
dom results remain the same as in Figure 4, since neither one af-
fects the forwarding algorithm. TVA performs slightly worse, since
fewer attack packets are filtered early in the network; however,
even with full deployment, TVA has difficulty distinguishing at-
tack packets, so partial deployment has a relatively small effect.
Portcullis’s results versus the puzzle-solving attacker remains unaf-
fected, since the puzzle-solving attacker does not generate enough
packets to congest the core of the network (where the legacy routers
reside); congestion only occurs near the victim, where the legiti-
mate senders’ increasing puzzle levels quickly break through.

Against the flooding attacker, Portcullis performs somewhat worse
than before, since about 15% of legitimate senders do not receive
a capability. However, the vast majority of legitimate senders that
do receive a capability do so extremely quickly (note the logarith-
mic x-axis). Senders fail to receive a capability when their traf-
fic is swamped by attack traffic early in the core of the network
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SHA-1 Normalized
Platform hashes/minute to Nokia 6620
Nokia 6620 25 K 1.00x
Nokia N70 36 K 1.44x
Sharp Zaurus PDA 56 K 2.24x
Xeon 3.20GHz 956 K 38.24x

Table 1: Computational Capabilities. This table summarizes
the rate at which various platforms can perform the SHA-1
hashes needed to solve and verify puzzles (averaged over 10 tri-
als, with negligible deviations).

at a legacy router, before reaching the victim’s ISP. Nonetheless,
this experiment demonstrates that even if a single ISP upgrades to
use Portcullis, more than 85% of legitimate senders will be able
to quickly establish a capability in the face of a DDoS attack by
20,000 attackers.

7. DISCUSSION

7.1 Asymmetric Computational Power
Computational puzzles give an advantage to endhosts with faster

CPUs. Because the typical life-time of a PC is 3 to 5 years, and
according to Moore’s Law, computing power available for a fixed
cost doubles every 18 months, the oldest endhosts would be ex-
pected to be at most 4 to 10 times slower than the newest endhosts.
To take an extreme case, our experiments show that a desktop PC
with a Hyper-Threaded Intel Xeon 3.20GHz processor and 3GB of
RAM has an approximately 38x computational advantage over a
Nokia 6620 cellphone. On the cellphone, we used an unoptimized
C++ implementation of SHA-1 based directly on the FIPS specifi-
cation [19]. We also employed the same code on a slightly newer
phone, the Nokia N70, as well as on the Sharp Zaurus, a PDA that
uses an Intel PXA255 CPU operating at 400MHz. On the PC, we
used the OpenSSL implementation of SHA-1.

Table 1 summarizes our results. The Nokia 6620 performs ap-
proximately 25K hashes/second on average, while the PC performs
approximately 956K hashes/second, indicating a disparity of only
38x (with even smaller disparities for the newer N70 and the PDA),
as opposed to the 1,500x disparity for per-bandwidth fairness.

To help mask differences in CPU speed, researchers have stud-
ied memory-bound functions [1, 11, 12]. Because memory access
latencies exhibit smaller variations across classes of devices (on the
order of 5-10x), using memory bound puzzles is an interesting topic
for our future research.

Alternately, providers of mobile Internet services may offer their
clients access to a proxy that computes a rate-limited number of
puzzles on behalf of each client. Such an arrangement may also
address power concerns for mobile devices. However, since clients
only employ Portcullis when the site they wish to contact is heavily
congested, we expect puzzle solving to be sufficiently infrequent
that it should not significantly impact battery life.

7.2 Puzzle Inflation
When senders (legitimate or malicious) send high-level puzzles

to a destination under attack, their packets will share links with
“innocent bystander” packets intended for other destinations. We
show that these high-level puzzle solutions will not “inflate” the
puzzle level required of the bystander packets.

We can analyze the situation by considering three possible con-
ditions for the link in question. First, if the link’s request capacity is
not exhausted, then the bystander packets will be completely unaf-

fected. Second, if the link’s request capacity is entirely consumed
by packets with high-level puzzles, then bystander senders must
send high-level puzzles as well, since the link is effectively under
a DDoS attack, even though it has not necessarily been specifically
targeted. Finally, the link’s request capacity may be exhausted by
a mixture of high-level and bystander packets. As a result, the
bystander packets essentially compete for the capacity not con-
sumed by the high-level packets. The bystander packets can solve
puzzles to improve their odds against other bystander packets, but
the puzzle-level need not be the same as the high-level puzzles.
While the bystander packets are competing for less than the link’s
full request capacity, the senders of the high-level puzzles actually
use less bandwidth than they otherwise would, since the compu-
tational time required to solve high-level puzzles forces them to
send at a much lower rate than they could at lower puzzle levels.
Thus, Portcullis only cause limited, “local” increases in puzzle lev-
els which will not cascade across the network.

8. RELATED WORK
Below, we review related work not already discussed, focusing

particularly on the areas of capability-based systems and computation-
based systems for DoS defense.
Capability-Based Systems. Early capability systems require
significant state within the network, as well as trust relationships
(i.e., secure keys) between infrastructure nodes and endhosts [3,
20]. Later schemes provide improved efficiency but do not defend
against request channel flooding. For example, Machiraju et al.
propose a secure Quality-of-Service (QoS) architecture [22]. They
use lightweight certificates to enable routers to designate band-
width reservations, and they propose a stateless recursive moni-
toring algorithm for routers to throttle flows that attempt to exceed
their allotted bandwidth. Yaar et al. propose SIFF, a capability-
based system that allows a receiver to enforce flow-based admis-
sion control but makes no effort to defend against DoC attacks [31].
Computation-Based Systems. Several researchers have pro-
posed computational puzzles for DDoS defense; however, none
of these schemes defend against network flooding attacks. Dwork
et al. propose puzzles to discourage spammers from sending junk
email [12]. Juels et al. use puzzles to prevent SYN flooding [17].
Aura et al. [5], Dean and Stubblefield [10], and Wang and Re-
iter [27] propose puzzles to defend against DoS attacks on application-
level client authentication mechanisms. These systems require the
server under attack to provide and verify the puzzle and solution
and are generally inappropriate for attacks that require in-network
prioritization. Gligor [14] analyzes the wait-time guarantees that
different puzzle and client-challenge techniques provide. He argues
that application-level mechanisms are necessary to prevent service-
level flooding and proposes a scheme that provides per-request,
maximum-waiting-time guarantees for clients under the assump-
tion that lower-layer, anti-flooding countermeasures exist.

The approach of Waters et al. [29] comes closest to the proof-
of-work mechanism used by Portcullis. They utilize a distribution
mechanism for puzzle challenges based on a trusted and centralized
bastion host. Unfortunately, this approach allows attackers to re-
use puzzle solutions for multiple destinations. In addition, to verify
puzzle solutions, the verifier must generate a large lookup table by
performing many public-key operations, which would impose an
excessive burden on routers since puzzle seeds change frequently.

Adopting an economic approach in “‘Proof of Work’ Proves Not
to Work”, Laurie and Clayton analyze the effectiveness of using
computational puzzles to fight spam [21]. However, Wobber dis-
covered an arithmetic error in a profit margin calculation that un-
dermines one of the key results [8]. Thus, the correct conclusion of
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their argument is that computational puzzles are a viable solution
at current spam response rates. Also, their arguments only consider
a simple fixed-rate payment system that differs significantly from
the proof-of-work scheme used by Portcullis.

9. CONCLUSION
The Denial-of-Capability (DoC) attack is a serious impediment

for capability-based DDoS defense mechanisms. Portcullis strictly
bounds the amount of delay a collection of attacking nodes can
create for any client. With realistic Internet-scale simulations, we
show the strong fairness Portcullis’s computational puzzles pro-
vide. Portcullis introduces a powerful mechanism for providing
DDoS resistance, but that benefit requires additional complexity.
Only time will tell if the Internet will need the strict availability
guarantees originally proposed by past capability schemes and now
made robust against DoC by Portcullis. In the mean time, we be-
lieve Portcullis provides an important design point to inform the
debate on highly available network architectures.
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