
18

Path ORAM: An Extremely Simple Oblivious RAM Protocol

EMIL STEFANOV, UC Berkeley

MARTEN VAN DIJK, University of Connecticut

ELAINE SHI, Cornell University

T.-H. HUBERT CHAN, University of Hong Kong

CHRISTOPHER FLETCHER, University of Illinois at Urbana-Champaign

LING REN, XIANGYAO YU, and SRINIVAS DEVADAS, MIT CSAIL

We present Path ORAM, an extremely simple Oblivious RAM protocol with a small amount of client storage.

Partly due to its simplicity, Path ORAM is the most practical ORAM scheme known to date with small client

storage. We formally prove that Path ORAM has a O (logN) bandwidth cost for blocks of size B = Ω(log2 N)
bits. For such block sizes, Path ORAM is asymptotically better than the best-known ORAM schemes with

small client storage. Due to its practicality, Path ORAM has been adopted in the design of secure processors

since its proposal.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information Systems]: Se-

curity and Protection

General Terms: Algorithms, Security

Additional Key Words and Phrases: Oblivious RAM, ORAM, Path ORAM, access pattern

ACM Reference format:

Emil Stefanov, Marten Van Dijk, Elaine Shi, T.-H. Hubert Chan, Christopher Fletcher, Ling Ren, Xiangyao Yu,

and Srinivas Devadas. 2018. Path ORAM: An Extremely Simple Oblivious RAM Protocol. J. ACM 65, 4, Article

18 (April 2018), 26 pages.

https://doi.org/10.1145/3177872

A conference version of the article has appeared in ACM Conference on Computer and Communications Security (CCS),

2013.

This work is partially supported by the NSF Graduate Research Fellowship grants DGE-0946797 and DGE-1122374, the

DoD NDSEG Fellowship, NSF grant CNS-1314857, DARPA CRASH program N66001-10-2-4089, and a grant from the Ama-

zon Web Services in Education program. Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the views of the funding agencies.

The research was supported in part by a grant from Hong Kong RGC under the contract HKU719312E.

Authors’ addresses: E. Stefanov, Department of Electrical Engineering and Computer Sciences, UC Berkeley, CA 94720,

USA; email: emil@berkeley.edu; M. V. Dijk, Electrical and Computing Engineering Department, University of Connecti-

cut, Storrs-Mansfield, CT 06269, USA; email: vandijk@engr.uconn.edu; E. Shi, Department of Computer Science, Cornell

University, Ithaca, NY 14853-7501, USA; email: elaine@cs.cornell.edu; T.-H. H. Chan, Department of Computer Science,

University of Hong Kong, Pokfulam Road, Hong Kong; email: hubert@cs.hku.hk; C. Fletcher, Computer Science Depart-

ment, University of Illinois–Urbana Champaign, Urbana, IL 61801, USA; email: cwfletch@illinois.edu; L. Ren, X. Yu, and S.

Devadas, MIT CSAIL, Cambridge, MA 02139, USA; emails: {renling, yxy, devadas}@csail.mit.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 0004-5411/2018/04-ART18 $15.00

https://doi.org/10.1145/3177872

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

https://doi.org/10.1145/3177872
https://doi.org/10.1145/3177872

18:2 E. Stefanov et al.

1 INTRODUCTION

It is well known that data encryption alone is often not enough to protect users’ privacy in out-
sourced storage applications. The sequence of storage locations accessed by the client (i.e., access
pattern) can leak a significant amount of sensitive information about the unencrypted data through
statistical inference. For example, Islam et al. (2012) demonstrated that by observing accesses to
an encrypted email repository, an adversary can infer as much as 80% of the search queries.

Oblivious RAM (ORAM) algorithms, first proposed by Goldreich (1987), Ostrovsky (1990),
and Goldreich and Ostrovsky (1996), allow a client to conceal its access pattern to the remote
storage by continuously shuffling and re-encrypting data as they are accessed. An adversary
can observe the physical storage locations accessed, but the ORAM algorithm ensures that the
adversary has a negligible probability of learning anything about the true (logical) access pattern.
Since its proposal, the research community has strived to find an ORAM scheme that is not
only theoretically interesting but also practical (Ostrovsky and Shoup 1997; Williams et al. 2008;
Williams and Sion 2008, 2012; Pinkas and Reinman 2010; Damgård et al. 2011; Boneh et al. 2011;
Goodrich and Mitzenmacher 2011; Goodrich et al. 2012; Kushilevitz et al. 2012; Shi et al. 2011;
Stefanov and Shi 2013b; Lorch et al. 2013; Williams et al. 2012; Stefanov et al. 2012).

In this article, we propose a novel ORAM algorithm called Path ORAM.1 This is to date the
most practical ORAM construction under small client storage. We prove theoretical bounds on its
performance and also present matching experimental results. Our contributions for Path ORAM
are stated as follows.

Theorem 1.1. For a working set of N blocks where each block has size B = Ω(logN) bits, with

high probability, Path ORAM uses O (B logN + log2 N) · ω (1) bits of client storage and O (B logN +
log3 N) bits of bandwidth.

Simplicity and Practical Efficiency. In comparison to other ORAM algorithms, our construc-
tion is arguably much simpler. Although we have no formal way of measuring its simplicity, the
core of the Path ORAM algorithm can be described in just 16 lines of pseudocode (see Figure 1)
and our construction does not require performing sophisticated de-amortized oblivious sorting
and oblivious cuckoo hash table construction like many existing ORAM algorithms (Goldreich and
Ostrovsky 1996; Ostrovsky and Shoup 1997; Williams et al. 2008; Williams and Sion 2008, 2012;
Pinkas and Reinman 2010; Damgård et al. 2011; Boneh et al. 2011; Goodrich and Mitzenmacher
2011; Goodrich et al. 2012; Kushilevitz et al. 2012).

Instead, each Path ORAM access can be expressed as simply fetching and storing a single path
in a tree stored remotely on the server. Path ORAM’s simplicity makes it more practical than any
existing ORAM construction with small (i.e., constant or polylogarithmic) client-side storage.

Asymptotic Efficiency. Table 1 compares the asymptotic efficiency of Path ORAM to prior
works. For a reasonably large block size B = Ω(log2 N) bits, where N is the total number of blocks,
and using nonuniform block sizes, (recursive) Path ORAM achieves an asymptotic bandwidth over-

head ofO (logN) blocks. (Recursion and nonuniform block size will be introduced in Section 4.) In
other words, to access a single logical block, the client needs to accessO (logN) physical blocks to
hide its access patterns from the storage server. Recursive Path ORAM consumes O (logN) · ω (1)
blocks of client-side storage2 to achieve a failure probability of N −ω (1) , negligible in N .

Path ORAM outperforms all prior schemes in bandwidth when the block size is at least
Ω(log2 N) with nonuniform block sizes. For small block sizes B = o(logN log logN), Kushilevitz

1Our construction is called Path ORAM because data on the server is always accessed in the form of tree paths.
2Throughout this article, when we write the notation д (n) = O (f (n)) · ω (1), we mean that for any function h (n) = ω (1),
it holds that д (n) = O (f (n)h (n)). Unless otherwise stated, all logarithms are in base 2.

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

Path ORAM: An Extremely Simple Oblivious RAM Protocol 18:3

Table 1. Comparison to Other ORAM Schemes

ORAM Scheme
Data Block

Size
Client Storage

(# Blocks of Size B)
Read & Write Bandwidth

(# Blocks of Size B)

Kushilevitz et al. (2012) B = Ω(logN) O (1) O (log2 N / log logN)
Gentry et al. (2013)
(recursive)

B = Ω(logN) O (log2 N) · ω (1) O (log3 N / log logN) · ω (1)

Chung et al. (2013)
(recursive)

B = Ω(logN) O (log2+ϵ (N)) O (log2 N · log logN) · ω (1)

Goodrich et al. (2012) B = Ω(logN) O (N ϵ) O (logN)

Path ORAM (recursive,
nonuniform block size)

B = Ω(logN) O (logN) · ω (1) O (logN + (logN)3/B)

B is the block size in bits; N is the total number of blocks. For Path ORAM, we use nonuniform block sizes where data

block size is B bits and position map block size is Θ(log N) bits independent of B . The failure probability is set to N −ω (1)

in this table, i.e., negligible in N .

et al. have asymptotically smaller bandwidth overhead than Path ORAM. For very large block
sizes B = Ω(N ϵ), Path ORAM matches Goodrich et al. (2012) but requires much less client storage.
We note that the block-size requirement is not introduced by Path ORAM. All known ORAM
algorithms effectively assume (often implicitly) a block size of at least Ω(logN), since the block
must be at least large enough to store the index of the block. Otherwise, if each block is a single
bit, an additional logN factor should be multiplied to the cost for all known ORAM algorithms.

Practical and Theoretic Impact of Path ORAM. Since we first proposed Path ORAM (Stefanov
and Shi 2012) in February 2012, it has made both a practical and a theoretic impact in the
community.

On the practical side, Path ORAM is the most suitable known algorithm for hardware ORAM
implementations due to its conceptual simplicity, small client storage, and practical efficiency. The
Ascend secure processor (Fletcher et al. 2012) uses Path ORAM as a primitive, and later optimized
Path ORAM for better hardware integration (Fletcher et al. 2015b, 2015c; Ren et al. 2017). Maas
et al. (2013) implemented Path ORAM on a secure processor using FPGAs and the Convey platform.

On the theoretic side, subsequent to the proposal of Path ORAM, several theoretic works
adopted the same idea of path eviction in their ORAM constructions—notably the works by
Gentry et al. (2013), Chung and Pass (2013), and Chung et al. (2013). These three works also try
to improve ORAM bounds based on the binary tree construction by Shi et al. (2011); however, as
pointed out in Section 1.1, our bound is asymptotically better than those by Gentry et al. (2013),
Chung and Pass (2013), and Chung et al. (2013). Gentry’s Path ORAM variant construction has
also been applied to secure multiparty computation (Gentry et al. 2013).

Novel Proof Techniques. Although our construction is simple, the proof for upper bounding
the client storage is quite intricate and interesting. Our proof relies on an abstract infinite
ORAM construction used only for analyzing the stash usage of a nonrecursive Path ORAM. For
a nonrecursive Path ORAM and certain choices of parameters, we show that during a particular
operation, the probability that the stash stores more than R blocks is at most 14 · 0.6−R . Choosing
R = O (logN) · ω (1) can make the failure probability negligible. Our empirical results in Section 7
indicate that the parameters in practice are even better than our theoretic bounds.

Our recursive Path ORAM construction has at most logN recursive ORAMs, so it needs at
most R logN blocks of client storage. We shall do a more careful design and analysis to achieve
Θ(R) blocks of client storage in the recursive construction.

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

18:4 E. Stefanov et al.

1.1 Related Work

Oblivious RAM was first investigated by Ostrovsky (1990), Goldreich (1987), and Goldreich and
Ostrovsky (1996) in the context of protecting software from piracy, and efficient simulation of
programs on oblivious RAMs. Since then, there has been much subsequent work devoted to im-
proving ORAM constructions (Ostrovsky and Shoup 1997; Williams et al. 2008; Williams and
Sion 2008, 2012; Pinkas and Reinman 2010; Damgård et al. 2011; Boneh et al. 2011; Goodrich and
Mitzenmacher 2011; Goodrich et al. 2012; Kushilevitz et al. 2012; Gentry et al. 2013; Chung and
Pass 2013). Path ORAM is based on the binary-tree ORAM framework proposed by Shi et al. (2011).

Near Optimality of Path ORAM. Goldreich and Ostrovsky show that under O (1) blocks of
client storage, any ORAM algorithm that treats each block as an opaque ball (and hence works for
generic block sizes) must have bandwidth cost at least Ω(logN)—even when the client can store
arbitrary metadata (e.g., the entire position map) for free. Since then, a long-standing open ques-
tion is whether it is possible to have an ORAM construction that has O (1) or poly log(N) client-
side storage and O (logN) block bandwidth cost (Goldreich and Ostrovsky 1996; Goodrich and
Mitzenmacher 2011; Kushilevitz et al. 2012). Path ORAM is also the first ORAM construction to
achieve O (logN) bandwidth overhead with small client-side storage (under any block size). This
partially addresses this open question for reasonably large data block sizes and nonuniform block
sizes. Note that the assumption of free metadata is stronger than large block and nonuniform block
size. Hence, the Goldreich-Ostrovsky bound applies to large and nonuniform block sizes. We note
that the subsequent work Circuit ORAM (Wang et al. 2015) improves our result by reducing the
client-side storage to O (1) blocks, showing that the Goldreich-Ostrovsky lower bound is tight in
their specific model. It remains an open question whether the ORAM lower bound can be circum-
vented if the model is relaxed, e.g., if the block need not be treated as an opaque ball—Boyle and
Naor (2016) have shown in subsequent work that this question is related to the circuit complexity
for sorting.

Comparison with Gentry et al. and Chung et al. Gentry et al. (2013) improve on the binary
tree ORAM scheme proposed by Shi et al. (2011). To achieve 2−λ failure probability, their scheme
achieves O (λ(logN)2/(log λ)) block bandwidth cost, for block size B = Ω(logN) bits. Adjusting

the failure probability to N −ω (1) , i.e., negligible in N , their bandwidth cost is O (log3 N / log logN)
blocks.3 Chung and Pass (2013) proved a similar (in fact, slightly worse) result as Gentry et al.
(2013). Our result is asymptotically better than Gentry et al. (2013) or Chung and Pass (2013), as
shown in Table 1.

In recent concurrent and independent work, Chung et al. (2013) proposed another statistically
secure binary-tree ORAM algorithm based on Path ORAM. Their theoretical bandwidth bound is
a log logn factor worse than ours for blocks of size Ω(logN). Their simulation results4 suggest an
empirical bucket size of 4—which means that their practical bandwidth cost is a constant factor
worse than Path ORAM, since they require operating on three paths in expectation for each data
access, while Path ORAM requires reading and writing only one path.

Statistical Security. We note that Path ORAM is also statistically secure (not counting the
encryption). Statistically secure or perfectly secure ORAMs have been studied in several prior
works (Damgård et al. 2011; Ajtai 2010). All known binary-tree-based ORAM schemes and vari-
ants are also statistically secure (Shi et al. 2011; Chung and Pass 2013; Gentry et al. 2013; Ren et al.
2015) (assuming each bucket is a trivial ORAM).

3Since N = poly (λ), the failure probability can also equivalently be written as λ−ω (1) . We choose to use N −ω (1) to simplify

the notation.
4Personal communication with Kai-Min Chung.

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

Path ORAM: An Extremely Simple Oblivious RAM Protocol 18:5

Other Research Directions in ORAM. There has also been work to optimize ORAM for the
number of communication rounds (Williams and Sion 2012; Fletcher et al. 2015a; Garg et al. 2016),
response time (Dautrich et al. 2014), parallelism (Boyle et al. 2016; Chen et al. 2016), and various
other metrics (Bindschaedler et al. 2015; Sahin et al. 2016). Some data structures can be made oblivi-
ous without using a full ORAM (Wang et al. 2014; Keller and Scholl 2014; Mitchell and Zimmerman
2014).

Applications of ORAM. ORAM has applications in many different theoretical and practical con-
texts. ORAM has often been quoted as a promising solution to privacy-preserving storage out-
sourcing (Williams et al. 2008, 2012; Stefanov and Shi 2013a, 2013b; Dautrich et al. 2014). ORAM
has been adopted in the design of secure processors (Maas et al. 2013; Liu et al. 2015; Fletcher et al.
2012, 2015b, 2015c; Ren et al. 2017) to conceal the access pattern. ORAM has been frequently used
as a building block in RAM-model cryptography such as garbled RAM (Lu and Ostrovsky 2013;
Gentry et al. 2014; Garg et al. 2015a, 2015b; Canetti and Holmgren 2016; Canetti et al. 2015, 2016)
and secure multiparty computation (Ostrovsky and Shoup 1997; Gordon et al. 2012; Boyle et al.
2015). It is well known that ORAM can eliminate access pattern leakage in searchable encryp-
tion (Islam et al. 2012; Curtmola et al. 2006), though some ORAM-like techniques (Naveed et al.
2014) were more often adopted for better efficiency. ORAM or ORAM-like techniques have been
used to construct proofs of retrievability (Cash et al. 2013; Shi et al. 2013).

Relation to Private Information Retrieval. Private Information Retrieval (PIR) (Chor et al.
1998; Chor and Gilboa 1997; Ostrovsky and Skeith 2007) also hides access patterns from untrusted
servers. Its main differences from ORAM are as follows. In PIR, a server holds public read-only
data that should be accessible to anyone. In ORAM, a client outsources its private data to a server
and can update the data. In PIR, the server can do computation on the data, while the traditional
ORAM model assumes the server is a simple storage device that only supports read and write
operations. A combination of the two has also been defined: a server stores private client data
and is able to do computation over the data to reduce bandwidth overhead. This combination has
been given multiple names, including private information storage (Ostrovsky and Shoup 1997),
oblivious storage (Boneh et al. 2011), or simply ORAM with server computation (Devadas et al.
2016). Constructions with constant bandwidth overhead and polylogarithmic server computation
have been shown in this model (Devadas et al. 2016).

2 PROBLEM DEFINITION

We consider a client that wishes to store data at a remote untrusted server while preserving its pri-
vacy. While traditional encryption schemes can provide data confidentiality, they do not hide the
data access pattern, which can reveal very sensitive information to the untrusted server. In other
words, the blocks accessed on the server and the order in which they were accessed is revealed.
We assume that the server is untrusted and the client is trusted, including the client’s processor,
memory, and disk.

The goal of ORAM is to completely hide the data access pattern (which blocks were read/written)
from the server. From the server’s perspective, the data access patterns from two sequences of
read/write operations with the same length must be indistinguishable.

Notations. We assume that the client fetches/stores data on the server in atomic units, referred
to as blocks, of size B bits each. For example, a typical value for B for cloud storage is 64 to 256KB,
while for secure processors smaller blocks (64B to 4KB) are preferable. Throughout the article, let
N be the working set, i.e., the number of distinct data blocks that are stored in ORAM.

Simplicity. We aim to provide an extremely simple ORAM construction in contrast with previous
work. Our scheme consists of only 16 lines of pseudo-code as shown in Figure 1.

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

18:6 E. Stefanov et al.

Security Definitions. We adopt the standard security definition for ORAMs from Stefanov et al.
(2012). Intuitively, the security definition requires that the server learns nothing about the access
pattern. In other words, no information should be leaked about (1) which data is being accessed,
(2) how old it is (when it was last accessed), (3) whether the same data is being accessed (linkability),
(4) access pattern (sequential, random, etc), or (5) whether the access is a read or a write.

Definition 2.1 (Security Definition). Let

�y := ((opM , aM , dataM), . . . , (op1, a1, data1))

denote a data request sequence of length M , where each opi denotes a read(ai) or a write(ai , data)
operation. Specifically, ai denotes the identifier of the block being read or written, and datai de-
notes the data being written. In our notation, index 1 corresponds to the most recent load/store
and index M corresponds to the oldest load/store operation.

Let A(�y) denote the (possibly randomized) sequence of accesses to the remote storage given the
sequence of data requests �y. An ORAM construction is said to be secure if (1) for any two data
request sequences �y and �z of the same length, their access patterns A(�y) and A(�z) are computa-
tionally indistinguishable by anyone but the client, and (2) the ORAM construction is correct in
the sense that it returns on input �y data that is consistent with �y with probability 1 − neдl (|�y |); i.e.,
the ORAM may fail with probability neдl (|�y |).
Adaptive Versus Nonadaptive Access Sequence. In the above security definition, an adversary
chooses the request sequence upfront and the notion seems to cover only a nonadaptive request
sequence. However, as we shall see, in our protocols, fresh randomness is generated for each access.
Hence, our proofs actually imply that there is a probabilistic polynomial-time simulator that sees
only the length but not the request sequence, and its output is statistically close to the sequence
of accesses made by our ORAM algorithm upon any adaptively chosen request sequence.

Like all other related work, our ORAM constructions do not consider information leakage
through the timing channel, such as when or how frequently the client makes data requests.
Achieving integrity against a potentially malicious server is discussed in Section 6.4. We do not
focus on integrity in our main presentation.

3 THE PATH ORAM PROTOCOL: NONRECURSIVE VERSION

We first describe the Path ORAM protocol with linear amount of client storage, and then later in
Section 4 we explain how the client storage can be reduced to (poly-)logarithmic via recursion.

3.1 Overview

We now give an informal overview of the Path ORAM protocol. The client stores a small amount
of local data in a stash. The server-side storage is treated as a binary tree where each node is a
bucket that can hold up to a fixed number of blocks.

Main Invariant. We maintain the invariant that at any time, each block is mapped to a uniformly
random leaf bucket in the tree, and unstashed blocks are always placed in some bucket along the
path to the mapped leaf. Whenever a block is read from the server, the entire path to the mapped
leaf is read into the stash, the requested block is remapped to another leaf, and then the path that
was just read is written back to the server. When the path is written back to the server, additional
blocks in the stash may be evicted into the path as long as the invariant is preserved and there is
remaining space in the buckets.

3.2 Server Storage

Data on the server is stored in a tree consisting of buckets as nodes. The tree does not have to
necessarily be a binary tree, but we use a binary tree in our description for simplicity.

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

Path ORAM: An Extremely Simple Oblivious RAM Protocol 18:7

Binary Tree. The server stores a binary tree data structure of height L and 2L leaves. In our
theoretic bounds, we need L = �log2 (N)�, but in our experiments, we observe that L = �log2 (N)� −
1 is sufficient. The tree can easily be laid out as a flat array when stored on disk. The levels of the
tree are numbered 0 to L, where level 0 denotes the root of the tree and level L denotes the leaves.

Path. Let x ∈ {0, 1, . . . , 2L − 1} denote the xth leaf node in the tree. Any leaf node x defines a
unique path from leaf x to the root of the tree. We use P (x) to denote the set of buckets along the
path from leaf x to the root. Additionally, P (x , �) denotes the bucket in P (x) at level � in the tree.

Bucket. Each node in the tree is called a bucket. Each bucket can contain up to Z real blocks.
Each real block is stored alongside some metadata: the address a of the block and the leaf x it is
mapped to. This forms a 3-tuple (a,x , data). If a bucket has fewer than Z real blocks, it is padded
with dummy blocks (with dummy metadata) to always be of size Z . It suffices to choose the bucket
size Z to be a small constant such as Z = 4 (see Section 7.1). Since there are 2L − 1 buckets in the
tree, the total server storage used is about Z · 2L blocks.

3.3 Client Storage and Bandwidth

The storage on the client consists of two data structures, a stash and a position map:

Stash. During the course of the algorithm, a small number of blocks might overflow from the tree
buckets on the server. The client locally stores these overflowing blocks in a local data structure
S called the stash. In Section 5, we prove that the stash has a worst-case size of O (logN) · ω (1)
blocks with high probability. In fact, in Section 7.2, we show that the stash is usually empty after
each ORAM read/write operation completes.

Position Map. The client stores a position map, such that x := position[a] means that block a is
currently mapped to the xth leaf node—this means that block a resides in some bucket in path
P (x) or in the stash. The position map changes over time as blocks are accessed and remapped.
Note that the mapping is also stored as metadata for each block in the binary tree on the server
side.

Bandwidth. For each load or store operation, the client reads a path of Z logN blocks from the
server and then writes them back, resulting in a total of 2Z logN block bandwidth used per access.
Since Z is a constant, the bandwidth usage is O (logN) blocks.

Client Storage Size. For now, we assume that the position map and the stash are both stored on
the client side. The position map is of size NL = N logN bits, which is of size O (N) blocks when
the block size B = Ω(logN). In Section 5, we prove that the stash for the basic nonrecursive Path
ORAM is at most O (logN)ω (1) blocks to obtain negligible failure probability. Later in Section 4,
we explain how the recursive construction can also achieve client storage ofO (logN) · ω (1) blocks
as shown in Table 1.

3.4 Path ORAM Initialization

The client stash S is initially empty. The server buckets are intialized to contain random encryp-
tions of the dummy block (i.e., initially no block is stored on the server). The client’s position map
is filled with independent random numbers between 0 and 2L − 1.

3.5 Path ORAM Reads and Writes

In our construction, reading and writing a block to ORAM is done via a single protocol called
Access described in Figure 1. Specifically, to read block a, the client performs data← Access

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

18:8 E. Stefanov et al.

Fig. 1. Protocol for data access. Read or write a data block identified by a. If op = read, the input parameter

data∗ = None, and the Access operation reads block a from the ORAM. If op = write, the Access operation

writes the specified data∗ to the block identified by a and returns the block’s old data.

Table 2. Notations

N Total # blocks outsourced to server
L Height of binary tree
B Block size (in bits)
Z Capacity of each bucket (in blocks)
P (x) Path from leaf node x to the root
P (x , �) The bucket at level � along the path P (x)

S Client’s local stash
position Client’s local position map

x := position[a] Block a is currently associated with leaf node x ; i.e., block a

resides somewhere along P (x) or in the stash

(read, a,None), and to write data∗ to block a, the client performs Access(write, a, data∗). The
Access protocol can be summarized in four simple steps:

(1) Remap block (Lines 1 to 2): Randomly remap the position of block a to a new random
position. Let x denote the block’s old position.

(2) Read path (Lines 3 to 5): Read the path P (x) containing block a. If the client performs
Access on block a for the first time, it will not find block a in the tree or stash, and should
assume that the block has a default value of zero.

(3) Update block (Lines 6 to 9): If the access is a write, update the data of block a.
(4) Write path (Lines 10 to 15): Write the path back and possibly include some additional

blocks from the stash if they can be placed into the path. Buckets are greedily filled with
blocks in the stash in the order of leaf to root, ensuring that blocks get pushed as deep
down into the tree as possible. A block a′ mapped to leaf x ′ can be placed in the bucket at

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

Path ORAM: An Extremely Simple Oblivious RAM Protocol 18:9

level � only if the path P (x ′) intersects the path accessed P (x) at level �, in other words,
if P (x , �) = P (x ′, �).

Subroutines. For ReadBucket(bucket), the client reads all Z blocks and their metadata (including
any dummy blocks) from the bucket stored on the server. Blocks are decrypted as they are read.
For WriteBucket(bucket, blocks), the client writes the blocks with their metadata into the specified
bucket on the server. When writing, the client pads blocks with dummy blocks to make it of size
Z—note that this is important for security. All blocks (including dummy blocks) are re-encrypted,
using a randomized encryption scheme, as they are written.

Computation. Client’s computation isO (logN) · ω (1) per data access. In practice, the majority of
this time is spent decrypting and encrypting O (logN) blocks per data access. We treat the server
as a storage device, so it only performs operations to retrieve and store O (logN) blocks per data
access.

3.6 Security Analysis

To prove the security of Path ORAM, let �y be a data request sequence of size M . By the definition
of Path ORAM, the server sees A(�y), which is a sequence

p = (xM ,xM−1, . . . ,x1),

where x j = positionj [aj](1 ≤ j ≤ M) is the position of address aj indicated by the position map
for the jth load/store operation. The order of accesses from M to 1 follows the notation from
Definition 2.1. The server also sees a sequence of encrypted paths P (x j), which is computationally
indistinguishable from a random sequence of bit strings due to randomized encryption.

Notice that once xi is revealed to the server, it is remapped to a completely new random label;
hence, xi is statistically independent of any x j for j < i with aj = ai . Since the positions of different
addresses do not affect one another in Path ORAM, xi is statistically independent of x j for j < i
with aj � ai . This shows that xi is statistically independent of x j for j < i . Therefore, by Bayes rule,

Pr(p) =
∏M

j=1 Pr(x j) = (1
2L)M . This proves that A(�y) is computationally indistinguishable from a

random sequence of bit strings.
Now the security follows from Theorem 5.1 in Section 5: for a stash size O (logN) · ω (1), Path

ORAM fails (in that it exceeds the stash size) with at most negligible probability.

4 RECURSION AND PARAMETERIZATION

4.1 Recursion Technique

In the scheme described in the previous section, the client must store a relatively large position
map. We leverage the recursion idea as described in the ORAM constructions of Stefanov et al.
(2012) and Shi et al. (2011) to reduce the client-side storage. The idea is simple: instead of storing
the position map on the client side, we store the position map on the server side in a smaller
ORAM, and recurse.

More concretely, consider a recursive Path ORAM made up of a series of ORAMs called
ORam0,ORam1,ORam2, . . . ,ORamX , where ORam0 contains the data blocks, the position map
of ORami is stored in ORami+1, and the client stores the position map for ORamX . We call ORam0

the data ORAM, and all the others position map ORAMs. An important parameter is the block size
for position map ORAMs, or equivalent, the number of position map entries each block can con-
tain. If we use a block size of χ logN for position map ORAMs, each block can contain χ position
map entries for the previous ORAM. Clearly, we require χ ≥ 2, so that ORami+1 is smaller than

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

18:10 E. Stefanov et al.

ORami (by a factor of χ). Then, for a block a0 in ORam0, its position is stored in block a1 =
a0

χ
of

ORam1, whose position is in turn stored in block a1 =
a0

χ 2 in ORam2 (all divisions take a floor on

the results), and so on. After
log N

log χ
levels of recursion, the final position map has constant size.

Now to access block a0 in ORam0, the client looks up and updates its position in block a1 in
ORam1, which triggers a recursive call to look up and update a1’s position in block a2 in ORam2,
and so on until finally a position of ORamX is looked up and updated in the client storage. Essen-
tially, this replaces lines 1 and 2 in Figure 1 for ORami with a recursive call to Access in ORami+1

with input (write, ai

χ
,x∗). Here, we need a write access in ORami+1 to return data and also support

partial write to a block (since we are updating one position map entry in a block). The rest of the
pseudocode in Figure 1 does not use position map and remains unchanged.

4.2 Parameterization and Other Metrics

In this section, we consider different ways to parameterize the scheme and additional metrics. In
general, we consider two settings, nonuniform and uniform block sizes. Nonuniform block size al-
lows the data blocks and metadata blocks (i.e., position map levels) to have different sizes, whereas
uniform block size requires that they have the same size. Besides the bandwidth metric, we also
consider (1) the number of accesses (in terms of blocks fetched)—this translates to the runtime of
the oblivious RAM program if we count each memory access as one time step; and (2) number of
roundtrips—assuming that each roundtrip can read and write multiple blocks.

—Nonuniform block size. We suggest parameterizing the scheme such that each position map
block has χ logN bits. In this case, the total bandwidth consumed for accessing a block is
O (B logN + log3 N) bits, and if B = Ω(log2 N), the bandwidth blowup factor is O (logN).
In this case, the total number of accesses is O (log2 N), and the number of roundtrips is
O (logN).

—Uniform block size. In this case, each position map block has the same size as the data
block and can store χ := B

log N
position map entries. Therefore, the number of position map

ORAMs is O (
log N

log χ
). We conclude that the number of roundtrips is O (

log N

log χ
), the total num-

ber of accesses is O (
log2 N

log χ
), and the total bandwidth consumed for accessing a block is

O (
B log2 N

log χ
). As a special case, if the block size is reasonably large, say, B = N ϵ for some

constant 0 < ϵ < 1, then the number of position map ORAMs is O (1), and the bandwidth
required to read one block is O (B logN).

5 THEORETIC BOUNDS ON STASH USAGE

In this section, we will analyze the stash usage for a nonrecursive Path ORAM, where each bucket
in the Path ORAM binary tree stores a constant number of blocks. In particular, we analyze the
probability that, after a sequence of load/store operations, the number of blocks in the stash ex-
ceeds R, and show that this probability decreases exponentially in R.

By ORAMZ
L we denote a nonrecursive Path ORAM with L + 1 levels in which each bucket stores

Z real/dummy blocks; the root is at level 0 and the leaves are at level L.
We define a sequence of load/store operations s as a triple (a,x,y) that contains (1) the sequence

a = (ai)s
i=1 of block addresses of blocks that are loaded/stored, (2) the sequence of labels x = (xi)s

i=1
as seen by the server (line 1 in Figure 1), and (3) the sequence y = (yi)s

i=1 of remapped leaf labels
(line 2 in Figure 1). The tuple (a1,x1,y1) corresponds to the most recent load/store operation,
(a2,x2,y2) corresponds to the next most recent load/store operation, and so on. A path from the
root to some xi is known as an eviction path, and a path from the root to some yi is known as an

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

Path ORAM: An Extremely Simple Oblivious RAM Protocol 18:11

assigned path. The number of load/store operations is denoted by s = |s|. The working set corre-
sponding to a is defined as the number of distinct block addresses ai in a. We write a(s) = a.

By ORAMZ
L [s] we denote the distribution of real blocks in ORAMZ

L after a sequence s of
load/store operations starting with an empty ORAM; the sequence s completely defines all the
randomness needed to determine, for each block address a, its leaf label and which bucket/stash
stores the block that corresponds to a. In particular, the number of real blocks stored in the buck-
ets/stash can be reconstructed.

We assume an infinite stash, and in our analysis we investigate the usage st(ORAMZ
L [s]) of

the stash, defined as the number of real blocks that are stored in the stash after a sequence s of
load/store operations. In practice, the stash is limited to some size R and Path ORAM fails after a
sequence s of load/store operations if the stash needs more space: this happens if and only if the
usage of the infinite stash is at least st(ORAMZ

L [s]) > R.

Theorem 5.1 (Main). Let a be any sequence of block addresses with a working set of size at most

N . For a bucket size Z = 5, tree height L = �logN �, and stash size R, the probability of a Path ORAM

failure after a sequence of load/store operations corresponding to a is at most

Pr
(
st

(
ORAM5

L[s]
)
> R | a(s) = a

)
≤ 14 · 0.6R ,

where the probability is over the randomness that determines x and y in s = (a,x,y).

As a corollary, for s load/store operations on N data blocks, Path ORAM with client storage
≤ R blocks, server storage 20N blocks, and bandwidth 10 logN blocks per load/store operation
fails during one of the s load/store operations with probability ≤ s · 14 · 0.6R . So, if we assume the
number of load/stores is equal to s = poly (N), then, for a stash of sizeO (logN)ω (1), the probability
of Path ORAM failure during one of the load/store operations is negligible in N .

Proof Outline. The proof of the main theorem consists of several steps: First, we introduce a sec-
ond ORAM, called∞-ORAM, together with an algorithm that postprocesses the stash and buckets
of∞-ORAM in such a way that if∞-ORAM gets accessed by a sequence s of load/store operations,
then the process leads to a distribution of real blocks over buckets that is exactly the same as the
distribution as in Path ORAM after being accessed by s.

Second, we characterize the distributions of real blocks over buckets in a ∞-ORAM for which
postprocessing leads to a stash usage > R. We show that the stash usage after postprocessing is > R
if and only if there exists a subtreeT for which its “usage” in∞-ORAM is more than its “capacity.”
This means that we can use the union bound to upper bound Pr[st(ORAMZ

L [s]) > R | a[s] = a) as
a sum of probabilities over subtrees.

Third, we analyze the usage of subtrees T . We show how a mixture of a binomial and a geo-
metric probability distribution expresses the probability of the number of real blocks that do not
get evicted from T after a sequence s of load/store operations. By using measure concentration
techniques, we prove the main theorem.

5.1 ∞-ORAM

We define ∞-ORAM, denoted by ORAM∞L , as an ORAM that exhibits the same tree structure as
Path ORAM with L + 1 levels but where each bucket has an infinite size. The ∞-ORAM is used
only as a tool for usage analysis and does not need to respect any security notions.

In order to use ORAM∞L to analyze the stash usage of ORAMZ
L , we define a postprocessing greedy

algorithm GZ that takes as input the state of ORAM∞L after a sequence s of load/store operations
and attempts to reassign blocks such that each bucket stores at most Z blocks, putting excess
blocks in the (initially empty) stash if necessary. We use stZ (ORAM∞L [s]) to denote the stash usage

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

18:12 E. Stefanov et al.

after the greedy algorithm is applied. The greedy algorithm is defined in terms of the following
operations.

Defining Operations to Analyze Bucket Usage. In order to compare the∞-ORAM and the real
Path ORAM, we define the following operations that can be applied to both ORAMs. We remark
that the purpose of these operations is for analyzing bucket usage and they are by no means related
to hiding data access patterns.

(1) Given a leaf label x , evict(x) performs eviction along the path from the root to the leaf x as
in the∞-ORAM.

(2) Given a leaf label x , pull(x) performs a procedure starting from the leaf bucket x along the
path toward the root bucket to ensure the usage of each bucket does not exceed its capac-
ity Z . Specifically, when we process a bucket whose capacity is smaller than the number
of blocks it contains, we assume that there is some global ordering on the block ids to
consistently decide which blocks have to be moved to the parent for further processing.

(3) Given a block id a, update(a) changes the position map of block a with a new label and
moves the block in the root.

Therefore, we can express accessing a block a with x = position[a] in terms of these operations
in each of the cases as follows:

(1) For the real Path ORAM: update(a), evict(x), pull(x).
(2) For the∞-ORAM: update(a), evict(x).

We say that two sequences of operations are equivalent if, starting from any configuration of
the ORAM, each bucket contains exactly the same blocks (not just the same number) after the
execution of the two sequences.

Lemma 5.2. Given any leaf labels x and y, the following two sequences are equivalent:

(a) pull(x), pull(y)
(b) pull(y), pull(x)

Proof. Consider any initial configuration, and letC be the lowest common ancestor of x and y.
Since there is a global ordering on the block ids to decide which blocks to keep in a bucket during
processing, both sequences are equivalent to the following procedure:

(1) Perform postprocessing from x toward C up to the point when blocks are added to C .
(2) Perform postprocessing from y toward C up to the point when blocks are added to C .
(3) Perform postprocessing from C toward the root. �

Defining Postprocessing Algorithm GZ . In view of Lemma 5.2, the greedy postprocessing GZ

is defined as concatenating operations pull(x) for all leaves x in any order.

Lemma 5.3. Suppose the block a has label x = position[a], and y is any label. Then, the following

two sequences are equivalent:

(a) update(a), evict(x), pull(x), pull(y)
(b) pull(y), update(a), evict(x), pull(x)

Proof. Since Lemma 5.2 states that the pull operations are commutative, sequence (a) is equiv-
alent to

(a’) update(a), evict(x), pull(y), pull(x).

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

Path ORAM: An Extremely Simple Oblivious RAM Protocol 18:13

We next argue why (a’) is equivalent to (b). The strategy is that we start from some fixed con-
figuration σ0 of the ORAM and run the process described in sequence (a’) and pause it at some
instant. Suppose C is the lowest common ancestor of the leaves x and y. Specifically, we run the
operations in (a’), and during the execution of pull(y), we pause the process at the moment when
the setQ of blocks originating from the path from leaf y toC are added to the bucketC . We denote
the configuration of the ORAM at this instant by σ1. Observe that after pull(y) in (a’), we will
immediately have pull(x). Hence, it is actually not necessary to complete the execution of pull(y)
and we break this operation. We will resume the execution of (a’) later, and note that there is only
pull(x) to be performed.

We next start from configuration σ0 and start executing sequence (b). While executing operation
pull(y), we pause the process at the moment when the setQ of blocks is added toC , which we recall
is the lowest common ancestor of x andy. Observe that the next operation is evict(x) in (b). Hence,
there is no need to continue the execution of pull(y) for processing from C to the root, because
any work done will be immediately nullified by the next evict(x). We next execute evict(x) and
observe that for an evict operation, blocks are oblivious to one another because the position of a
block is independent of whether other blocks are present. Since all the blocks in Q will stay at C ,
it follows that after executing evict(x) in (b), the configuration of the ORAM is also σ1, which is
exactly the configuration reached at the instant we have paused the execution of (a’).

We next can resume executing both sequences. Since at this instant both executions are at con-
figuration σ1, and the remaining operation in both executions is pull(x), it follows that both exe-
cutions must reach the same configuration afterward. �

Lemma 5.4. The stash usage in a postprocessed∞-ORAM is exactly the same as the stash usage in

Path ORAM:

stZ
(
ORAM∞L [s]

)
= st

(
ORAMZ

L [s]
)
.

Proof. We observe that in the real Path ORAM, the operations evict and pull are interleaved,
while postprocessing an∞-ORAM can be interpreted as having the evict operations first, followed
by all possible pull operations. Specifically, suppose the operation sequence corresponding to n
accesses in the real Path ORAM is:

(a): update(an), evict(xn), pull(xn), . . . , update(a1), evict(x1), pull(x1).
By applying Lemma 5.3 repeatedly, we have the following equivalent sequence:
(b): update(an), evict(xn), . . . , update(a1), evict(x1), pull(x1), . . . , pull(xn).
We remark that the pull operations are in reversed order, but actually it does not really matter

because of Lemma 5.2.
Observe that the∞-ORAM before the postprocessing can be obtained by the sequence
(c): update(an), evict(xn), . . . , update(a1), evict(x1).
After appending (c) with a concatenation of pull(x) operations for all leaves x , we will have a

postprocessed∞-ORAM.
The final step is that in sequence (b), a pull(x) operation might be missing for some leaf x ,

because there is no corresponding evict(x) operation. Observe that at the end of sequence (b), no
bucket will have its capacity violated. Hence, adding the operations pull(x) for all missing leaves
x to sequence (b) at the end has no effect. This completes the proof. �

5.2 Usage/Capacity Bounds

To investigate when a not-processed ORAM∞L can lead to a stash usage of >R after postprocessing,
we start by analyzing bucket usage over subtrees. When we talk about a subtree T of the binary
tree, we always implicitly assume that it contains the root of the ORAM tree; in particular, if a node
is contained inT , then so are all its ancestors. We define n(T) to be the total number of nodes inT .

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

18:14 E. Stefanov et al.

For∞-ORAM, we define the usage uT (ORAM∞L [s]) ofT after a sequence s of load/store operations
as the actual number of real blocks that are stored in the buckets of T .

The following lemma characterizes the stash usage:

Lemma 5.5. The stash usage stZ (ORAM∞L [s]) in postprocessed∞-ORAM is >R if and only if there

exists a subtree T in ORAM∞L such that uT (ORAM∞L [s]) > n(T) · Z + R.

Proof.
If part: SupposeT is a subtree such that uT (ORAM∞L [s]) > n(T) · Z + R. Observe that the greedy

algorithm can assign the blocks in a bucket only to an ancestor bucket. Since T can store at most
n(T) · Z blocks, more than R blocks must be assigned to the stash by the greedy algorithm GZ .

Only if part: Suppose that stZ (ORAM∞L [s]) > R. DefineT to be the maximal subtree that contains
only buckets with exactly Z blocks after postprocessing by the greedy algorithmGZ . Suppose b is
a bucket not in T . By the maximality of T , there is an ancestor (not necessarily proper ancestor)
bucket b ′ of b that contains fewer than Z blocks after postprocessing, which implies that no block
from b can go to the stash. Hence, all blocks that are in the stash must have originated from a
bucket in T . Therefore, it follows that uT (ORAM∞L [s]) > n(T) · Z + R �

Lemma 5.6 (Worst-case Address Pattern). Fix some subtree T and positive integer R. Out

of all address sequences a such that the number of distinct blocks accessed is N , the probability

Pr[uT (ORAM∞L [s]) > R |a(s) = a] is maximized by a sequence a in which each block address ap-

pears exactly once, i.e., s = N , and there are no duplicate block addresses. As a consequence, for such

an address pattern, the labels in (xi)N
i=1 and (yi)N

i=1 are all statistically independent of one another.

Proof. Suppose that there exists an address in a that has been loaded/stored twice in∞-ORAM.
Then, there exist indices i and j, i < j, with ai = aj . Without the jth load/store, the working set
remains the same and it is more likely for older blocks corresponding to ak , k > j to not have been
evicted fromT (since there is one less load/store that could have evicted an older block to a bucket
outsideT ; also notice that buckets in∞-ORAM are infinitely sized, so removing the jth load/store
does not generate extra space that can be used for storage of older blocks that otherwise would
not have found space). So the probability Pr[uT (ORAM∞L [s]) > R |a(s) = a] is maximized when
a = (ai)s

i=1 is a sequence of block addresses without duplicates. �

Remark 5.7. Observe that Lemma 5.6 only implies that the worst-case address pattern consists of
accesses to distinct blocks. However, it might be possible that the worst case is achieved when the
number of distinct blocks is less than N . While we do not directly claim that accessing N distinct
blocks must be the worst case, we remark that our probability bound will still hold even if the
number of distinct blocks accessed is smaller than N . Specifically, the number of distinct blocks
only plays a part in the Balls-and-Bins Game that we define in Section 5.5.

Bounding Usage for Each Subtree. In view of Lemma 5.6, we fix a sequence a of N distinct block
addresses. The randomness comes from the independent choices of labels (xi)N

i=1 and (yi)N
i=1.

As a corollary to Lemmas 5.4 and 5.5, we obtain

Pr
[
st

(
ORAMZ

L [s]
)
> R

]

= Pr
[
stZ

(
ORAM∞L [s]

)
> R

]

= Pr
[
∃T uT

(
ORAM∞L [s]

)
> n(T)Z + R

]

≤
∑

T

Pr
[
uT

(
ORAM∞L [s]

)
> n(T)Z + R

]
,

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

Path ORAM: An Extremely Simple Oblivious RAM Protocol 18:15

Fig. 2. A subtree containing some leaves of the original ORAM binary tree, augmented with the exit nodes.

where T ranges over all subtrees containing the root, and the inequality follows from the union
bound.

Since the number of ordered binary trees of size n is equal to the Catalan number Cn , which is
≤4n ,

Pr
[
st

(
ORAMZ

L [s]
)
> R

]
≤

∑
n≥1

4n max
T :n (T)=n

Pr
[
uT

(
ORAM∞L [s]

)
> nZ + R

]
. (1)

We next give a uniform upper bound for Pr[uT (ORAM∞L [s]) > nZ + R] in terms of n, Z , and R.

5.3 Analyzing Usage of Subtree via Eviction Game

In view of Lemma 5.6, we assume that the request sequence is of length N and consists of distinct
block addresses. Recall that the 2N labels in x = (xi)N

i=1 and y = (yi)N
i=1 are independent, where

each label corresponds to a leaf bucket. The indices i are given in reverse order; i.e., i = N is the
first access and i = 1 is the last access.

At every time step i , a block is requested. The block resides in a random path with some label xi

previously chosen (however, the random choice has never been revealed). This path is now visited.
Henceforth, this path is called the eviction path Pevict (i).

Then, the block is logically assigned to a freshly chosen random path with label yi , referred to
as the assigned path Passign (i).

Recall that given subtree T , we want to probabilistically bound the quantity uT (ORAM∞L [s]),
which is the number of blocks that, at the end of an access sequence s, survive in the subtree T ,
i.e., have not been evicted out of the subtree T .

Definition 5.8 (Exit Node). For a given path P leading to some leaf node, suppose that some node
u is the first node of the path P that is not part of T ; then we refer to node u as the exit node,
denoted u := exit(P ,T). If the whole path P is contained in T , then the exit node exit(P ,T) is null.

To bound the number of blocks residing in T at the end of an access sequence of N , we use the
following lemma.

Lemma 5.9. Suppose at step i , a block ai is requested and is assigned to some path Passign (i) at the

end of the request. Then, the block ai will be evicted from tree T if and only if there exists a later

step j ≤ i (recalling that smaller indices mean later) such that both exit nodes exit(Pevict (j),T) and

exit(Passign (i),T) are equal and not null.

Proof. Observe that after step i , block ai can only be evicted by going through the exit node
exit(Passign (i),T), if it is not null.

Hence, block ai is evicted if and only if in some later step j, the path Pevict (j) intersects
exit(Passign (i),T), which is equivalent to the conclusion of the lemma. �

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

18:16 E. Stefanov et al.

We next define some notations relating to the subtree T .
Let F be the set of nodes in T that are also leaves of the ORAM binary tree; we denote l := |F |.

We augment the tree T by adding nodes to form T̂ in the following way. If a node in T has any

child node v that is not in T , then node v will be added to T̂ . The added nodes in T̂ are referred to
as exit nodes, denoted by E; the leaves of T̂ are denoted by Ê = E ∪ F . Observe that ifT contains n

nodes and |F | = l , then |Ê | = n − l + 1.
We summarize the notations we use in the following table.

Variable Meaning
T a subtree rooted at the root of the ORAM∞ binary tree

T̂ augmented tree by including every child (if any) of every node in T
F nodes of a subtree T that are leaves to the ORAM binary tree
E set of exit nodes of a subtree T

Ê := E ∪ F set of all leaves of T̂
Z capacity of each bucket

Eviction Game. Consider the following eviction game, which is essentially playing the ORAM

access sequence reversed in time. Initially, all nodes in Ê are marked closed; all nodes in F will
remain closed, and only nodes in E may be marked open later.

For i = 1, 2, . . . ,N , do the following:

(1) Pick a random eviction path starting from the root, denoted Pevict (i). The path will intersect

exactly one node v in Ê. If v is an exit node in E, mark node v as open (if that exit node is
already marked open, then it will continue to be open).

(2) For a block requested in time step i , pick a random assignment path Passign (i) starting from

the root. The path Passign (i) will intersect exactly one node in Ê. If this node is closed, then
the block survives; otherwise, the block is evicted from T .

For i ∈ [N], a block bi from step i survives because its corresponding assignment path intersects
a node in F , or an exit node that is closed. We define Xi to be the indicator variable that equals
1 if and only if the path Passign (i) intersects a node in F (and block bi survives), and Yi to be the
indicator variable that equals 1 if and only if the path Passign (i) intersects a node in E and block bi

survives. DefineX :=
∑

i ∈[N] Xi andY :=
∑

i ∈[N] Yi ; observe that the number of blocks that survive
is X + Y .

5.4 Negative Association

Independence is often required to show measure concentration. However, the random variables
X and Y are not independent. Fortunately, X and Y are negatively associated. For simplicity, we
show a special case in the following lemma, which will be useful in the later measure concentration
argument.

Lemma 5.10. For X and Y defined above, and all t ≥ 0, E[et (X+Y)] ≤ E[etX] · E[etY].

Proof. Observe that there exists some p ∈ [0, 1], such that for all i ∈ [N], p = Pr[Xi = 1]. For
each i ∈ [N], define qi := Pr[Yi = 1]. Observe that the qi s are random variables, and they are non-
increasing in i and determined by the choice of eviction paths.

For each i ∈ [N], Xi + Yi ≤ 1, and hence Xi and Yi are negatively associated. Conditioning on
q := (qi)i ∈[N], observe that the (Xi ,Yi)s are determined by the choice of independent assignment
paths in different rounds, and hence are independent over different is. Hence, it follows from

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

Path ORAM: An Extremely Simple Oblivious RAM Protocol 18:17

Dubhashi and Ranjan (1998, Proposition 7(1)) that, conditioning on q, X and Y are negatively
associated.

In particular, for nonnegative t , we have E[et (X+Y) |q] ≤ E[etX |q] · E[etY |q] = E[etX] · E[etY |q],
where the last equality follows because X is independent of q. Taking expectation over q gives

E[et (X+Y)] ≤ E[etX] · E[etY]. �

5.5 Stochastic Dominance

Because of negative association, we consider two games to analyze the random variables X and Y

separately. The first game is a balls-and-bins game, which produces a random variable X̂ that has
the same distribution as X . The second game is a modified eviction game with countably infinite

number of rounds, which produces a random variable Ŷ that stochastically dominates Y , in the

sense that Ŷ and Y can be coupled such that Y ≤ Ŷ .

(1) Balls-and-Bins Game: For simplicity, we assume N = 2L . In this game, N blocks are
thrown independently and uniformly at random into N buckets corresponding to the
leaves of the ORAM binary tree. The blocks that fall in the leaves in F survive. Observe

that the number X̂ of surviving blocks has the same distribution asX . As mentioned in Re-
mark 5.7, if the number of distinct blocks is smaller than N , then in this game, the number
of balls will be smaller. Hence, the corresponding random variable will be stochastically
dominated by the case with N balls.

(2) Infinite Eviction Game: This is the same as before, except for the following differences.

(a) Every node in Ê is initially closed, but all of them could be open later. In particular, if
some eviction path Pevict (i) intersects a leaf node v ∈ F , node v will become open.

(b) There could be countably infinite number of rounds, until eventually all nodes in Ê
are open, and no more blocks can survive after that.

Let Ŷ be the total number of surviving blocks in the infinite eviction game. Observe that a
block with assigned path intersecting a node in F will not be counted toward Y , but might

be counted toward Ŷ if the node is closed. Hence, there is a natural coupling such that the
number of surviving blocks in the first N rounds in the infinite game is at least Y in the

finite eviction game. Hence, the random variable Ŷ stochastically dominates Y . Hence, we

have for all nonnegative t , E[etY] ≤ E[et Ŷ].

5.6 Measure Concentration for the Number of Surviving Blocks in Subtree

We shall find parameters Z and R such that, with high probability, X + Y is at most nZ + R. For
simplicity, we assume N = 2L is a power of two.

Lemma 5.11. Suppose that the address sequence is of length N , where L :=
⌈
log2 N

⌉
. Moreover,

suppose thatT is a subtree of the binary ORAM tree containing the root having n = n(T) nodes. Then,

for Z = 5, for any R > 0, Pr[uT (ORAM∞L [s]) > n · Z + R] ≤ 1
4n · (0.9332)n · e−0.5105R .

Proof. Because of negative association between X and Y , and stochastic dominance by X̂ and

Ŷ , we analyze X̂ and Ŷ .

Observe that if T has n nodes, among which l are in F , then T̂ has n − l + 1 leaves in Ê.

Balls-and-Bins Game. Recall that Xi is the indicator variable for whether the assigned path

Passign (i) intersects a bucket in F . Then, X̂ =
∑

i ∈[n] Xi . Recall that l = |F | and there are N = 2L leaf

buckets in the binary ORAM tree. Observe that for real t , E[etXi] = (1 − l
N

) + l
N
et ≤ exp(l

N
(et −

1)), and hence by independence, E[et X̂] ≤ exp(l (et − 1)).

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

18:18 E. Stefanov et al.

Infinite Eviction Game. For each v ∈ Ê, suppose v is at depth dv (the root is at depth 0), and let

its weight be w (v) := 1
2dv

. Observe that the sum of weights of nodes in Ê is 1.

Define Mj to be the number of surviving blocks such that there are exactly j open nodes at

the moment when the corresponding assigned paths are chosen. Since Ê contains n − l + 1 nodes,
we consider j from 1 to k = n − l . (Observe that in the first round of the infinite eviction game,

the first eviction path opens one of the nodes in Ê, and hence, the number of open nodes for the
first block is 1.) Let Q j be the number of rounds in which, at the moment when the assigned path
is chosen, there are exactly j open nodes. Let w j be the weight of the jth open node. Define qj :=

1 −∑j
i=1wi . Observe that conditioning onqj ,Q j follows the geometric distribution with parameter

qj ; specifically, Pr[Q j = i |qj] = (1 − qj)
iqj , for i ≥ 0.

Moreover, conditioning on qj and Q j , Mj is the sum of Q j independent Bernoulli random vari-
ables, each with expectation qj .

Define Ŷ :=
∑k

j=1 Mj . We shall analyze the moment-generating function E[et Ŷ] for appropriate

values of t > 0. The strategy is that we first derive an upper bound ϕ (t) for E[et Mk |w], where
w := {w j }j≤k , which depends only on t (and in particular independent of w or k). This allows us

to conclude that E[et Ŷ] ≤ (ϕ (t))k .
For simplicity, in the below argument, we assume that we have conditioned on w = {w j }j≤k and

we write Q = Qk , M = Mk , and q = qk .
Recall that M is a sum of Q independent Bernoulli random variables, where Q has a geometric

distribution. Therefore, we have the following:

E[et M |w] =
∑
i≥0

q(1 − q)iE[et M |Q = i,w] (2)

≤
∑
i≥0

q(1 − q)i exp(qi (et − 1)) (3)

≤ q exp(q(et − 1))

1 − (1 − q) exp(q(et − 1))
(4)

=
q

exp(−q(et − 1)) − (1 − q)
(5)

≤ q

1 − q(et − 1) − 1 + q
(6)

=
1

2 − et
. (7)

From Equations (2) to (3), we consider the moment-generating function of a sum of i indepen-
dent Bernoulli random variables, each having expectation q: E[et M |Q = i,w] = ((1 − q) + qet)i ≤
exp(qi (et − 1)). In Equation (4), for the series to converge, we observe that (1 − q) exp(q(et − 1)) ≤
exp(q(et − 2)), which is smaller than 1 when 0 < t < ln 2. In Equation (6), we use 1 − u ≤ exp(−u)
for all real u.

Hence, we have shown that for 0 < t < ln 2, E[et
∑k

j=1 Mj |w] = E[et
∑k−1

j=1 Mj |w] · E[et Mk |w] (since
conditioning on w, Mk is independent of past history), which we show from above is at most

E[et
∑k−1

j=1 Mj |w] · (1
2−e t). Taking expectation over w gives E[et

∑k
j=1 Mj] ≤ E[et

∑k−1
j=1 Mj] · (1

2−e t).
Observe that the inequality holds independent of the value of q = qk . Therefore, the same argu-

ment can be used to prove that, for any 1 < κ ≤ k , we have E[et
∑κ

j=1 Mj] ≤ E[et
∑κ−1

j=1 Mj] · (1
2−e t).

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

Path ORAM: An Extremely Simple Oblivious RAM Protocol 18:19

Hence, a simple induction argument on k = n − l can show that E[et Ŷ] ≤ (1
2−e t)n−l .

Combining Together. Let Z be the capacity for each bucket in the binary ORAM tree, and R be
the number of blocks overflowing from the binary tree that need to be stored in the stash.

We next perform a standard moment-generating function argument. For 0 < t < ln 2, Pr[X +
Y ≥ nZ + R] = Pr[et (X+Y) ≥ et (nZ+R)], which, by Markov’s Inequality, is at most E[et (X+Y)] ·
e−t (nZ+R) , which, by negative associativity and stochastic dominance, is at most E[et X̂] · E[et Ŷ] ·
e−t (nZ+R) ≤ (e−t Z

2−e t)n−l · el (e t−1−tZ) · e−t R .

Putting Z = 5 and t = ln 5
3 , one can check that max{ e−t Z

2−e t , ee t−1−tZ } ≤ 1
4 · 0.93312, and so the

probability is at most 1
4n · (0.93312)n · 0.6R . �

Proof of Theorem 5.1. By applying Lemma 5.11 to the inequality in Equation (1), we have
the following: Pr[st(ORAMZ

L [s]) > R |a(s) = a] ≤ ∑
n≥1 4n · 1

4n · (0.93312)n · 0.6R ≤ 14 · 0.6R , as
required.

5.7 Bounds for Shared Stash

We now show that if all levels of the recursion use the same stash, the stash size isO (logN) · ω (1)
with high probability.

Suppose there are K = O (logN) levels of recursion in the recursive Path ORAM. We consider
a moment after a sequence of ORAM operations are executed. For k ∈ [K], let Sk be the number
of blocks in the stash from level k . From Theorem 5.1, for each k ∈ [K], for each R > 0, Pr[Sk >
R] ≤ 14 · 0.6R . Observing that a geometric distribution G with parameter p satisfies Pr[G > R] ≤
(1 − p)R , we have the following.

Proposition 5.12. For each k ∈ [K], the random variable Sk is stochastically dominated by 3 +G,

where G is the geometric distribution with parameter p = 1 − 0.6 = 0.4.

From Proposition 5.12, it follows that the number of stash blocks in the common storage is
stochastically dominated by 3K +

∑
k ∈[K]Gk , where Gk s are independent geometric distribution

with parameter p = 0.4. It suffices to perform a standard measure concentration analysis on a
sum of independent geometrically distributed random variables, but we need to consider the case
that the sum deviates significantly from its mean, because we want to achieve negligible failure
probability.

Lemma 5.13 (Sum of Independent Geometric Distributions). Suppose (Gk : k ∈ [K]) are in-

dependent geometrically distributed random variables with parameter p ∈ (0, 1). Then, for R > 0, we

have Pr[
∑

k ∈[K]Gk > E[
∑

k ∈[K]Gk] + R] ≤ exp(−pR

2 +
K
2).

Proof. We use the standard method of moment-generating function. For t ≤ p

2 , we have, for
each k ∈ [K],

E[etGk] =
∑
i≥1

p (1 − p)i · eit (8)

=
pet

1 − (1 − p)et
=

p

p + e−t − 1
(9)

≤ p

p − t =
1

1 − t
p

(10)

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

18:20 E. Stefanov et al.

≤ 1 +
t

p
+

2t2

p2
(11)

≤ exp

(
t

p
+

2t2

p2

)
, (12)

where in Equation (9), the geometric series converges, because t ≤ p

2 < ln 1
1−p

, for 0 < p < 1. In

Equation (10), we use the inequality 1 − e−t ≤ t ; in Equation (11), we use the inequality 1
1−u
≤

1 + u + 2u2, for u ≤ 1
2 .

Observing that E[Gk] = 1
p

, we have for 0 < t ≤ p

2 ,

Pr[
∑

k ∈[K]Gk >E[
∑

k ∈[K]Gk] + R] ≤ E[exp(t
∑

k ∈[K]Gk)] · exp(−t (K
p
+ R)) ≤ exp(−tR + 2t 2K

p2).

Putting t =
p

2 , we have Pr[
∑

k ∈[K]Gk > E[
∑

k ∈[K]Gk] + R] ≤ exp(−pR

2 +
K
2), as required. �

From Lemma 5.13, observing that K = O (logN) and p = 0.3998, to achieve failure probability
1

N ω (1) , it suffices to set the capacity of the common stash storage to be 1
p
· (O (K) + (logN) · ω (1)) =

Θ(logN) · ω (1) blocks.

6 APPLICATIONS AND EXTENSIONS

6.1 Oblivious Binary Search Tree

Based on a class of recursive, binary-tree-based ORAM constructions, Gentry et al. (2013) propose
a novel method for performing an entire binary search using a single ORAM lookup. Their method
is immediately applicable to Path ORAM. As a result, Path ORAM can be used to perform search
on an oblivious binary search tree, using O (log2 N) bandwidth. Note that since a binary search
requires navigating a path of O (logN) nodes, using existing generic ORAM techniques would
lead to bandwidth cost of O ((logN)3/ log logN).

6.2 Stateless ORAM

Oblivious RAM is often considered in a single-client model, but it is sometimes useful to have
multiple clients accessing the same ORAM. In that case, in order to avoid complicated (and possibly
expensive) oblivious state synchronization between the clients, Goodrich et al. (2012) introduce the
concept of stateless ORAM, where the client state is small enough so that any client accessing the
ORAM can download it before each data access and upload it afterward. Then, the only thing
clients need to store is the private key for the ORAM (which does not change as the data in the
ORAM changes).

In our recursive Path ORAM construction, we can download and upload the client state before
and after each access. Since the client state is only O (logN) · ω (1) and the bandwidth is O (logN)
when B = Ω(log2 N), we can reduce the permanent client state to O (1) and achieve a bandwidth
ofO (logN) · ω (1). Note that during an access, the client still needs aboutO (logN) · ω (1) transient

client storage to perform the Access operation, but after the Access operation completes, the client
only needs to store the private key.

For smaller blocks when B = Ω(logN), we can achieve O (1) permanent client storage,
O (logN) · ω (1) transient client storage, and O (log2 N) bandwidth cost.

6.3 Secure Processors

In a secure processor setting, private computation is done inside a tamper-resistant proces-
sor (or board), and main memory (e.g., DRAM) accesses are vulnerable to eavesdropping and

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

Path ORAM: An Extremely Simple Oblivious RAM Protocol 18:21

Fig. 3. Empirical estimation of the required stash size to achieve failure probability less than 2−λ , where λ
is the security parameter. Measured for N = 216, but as Figure 4 shows, the stash size does not depend on

N (at least for Z = 4). The measurements represent a worst-case (in terms of stash size) access pattern. The

stash size does not include the temporarily fetched path during Access.

tampering. As mentioned earlier, Path ORAM is particularly amenable to hardware design because
of its simplicity and low on-chip storage requirements.

The Ascend secure processor (Fletcher et al. 2012; Ren et al. 2013b; Fletcher et al. 2015b, 2015c;
Ren et al. 2017) built Path ORAM in both FPGA and custom silicon. They improve the bandwidth
cost and stash size of the recursive construction through various hardware and architectural op-
timizations. Maas et al. (2013) built a hardware implementation of a Path ORAM-based secure
processor using FPGAs and the Convey platform. Both designs rely on on-chip caches while mak-
ing Path ORAM requests only when last-level cache misses occur. The two projects report about
1.2× to 5× performance overhead for many benchmarks such as SPEC traces and SQLite queries.

6.4 Integrity

Our protocol can be easily extended to provide integrity (with freshness) for every access to the
untrusted server storage. Because data from untrusted storage is always fetched and stored in the
form of a tree path, we can achieve integrity by simply treating the Path ORAM tree as a Merkle
tree, where data is stored in all nodes of the tree (not just the leaf nodes). In other words, each
node (bucket) of the Path ORAM tree is tagged with a hash of the following form:

H (b1 ‖ b2 ‖ . . . ‖ bZ ‖ h1 ‖ h2),

where bi for i ∈ {1, 2, . . . ,Z } are the blocks in the bucket (some of which could be dummy blocks)
andh1 andh2 are the hashes of the left and right child. For leaf nodes,h1 = h2 = 0. Hence, only two
hashes (for the node and its sibling) need to be read or written for each ReadBucket or WriteBucket

operation. Ren et al. (2013a) and Fletcher et al. (2015b) further optimize the integrity verification
overhead for the recursive Path ORAM construction.

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

18:22 E. Stefanov et al.

Fig. 4. The stash size to achieve failure probability less than 2−λ does not depend on N (Z = 4). Measured for

a worst-case (in terms of stash size) access pattern. The stash size does not include the temporarily fetched

path during Access.

Fig. 5. Required max stash size for large security parameters. Shows the maximum stash size required

such that the probability of exceeding the stash size is less than 2−λ for a worst-case (in terms of stash

size) access pattern. Extrapolated based on empirical results for λ ≤ 26. The stash size does not include the

temporarily fetched path during Access.

7 EVALUATION

In our experiments, the Path ORAM uses a binary tree with height L =
⌈
log2 (N)

⌉ − 1.

7.1 Stash Occupancy Distribution

Stash Occupancy. In both the experimental results and the theoretical analysis, we define the stash

occupancy to be the number of overflowing blocks (i.e., the number of blocks that remain in the stash)

after the write-back phase of each ORAM access. This represents the persistent local storage re-
quired on the client side. In addition, the client also requires under Z log2 N transient storage for
temporarily caching a path fetched from the server during each ORAM access.

Our main theorem in Section 5 shows that the probability of exceeding stash capacity decreases
exponentially with the stash size, given that the bucket size Z is large enough. This theorem is
verified by experimental results as shown in Figure 4 and Figure 3. In each experiment, the ORAM
is initially empty. We first load N blocks into ORAM and then access each block in a round-robin
pattern. That is, the access sequence is {1, 2, . . . ,N , 1, 2, . . . ,N , 1, 2, . . .}. In Section 5, we show
that this is a worst-case access pattern in terms of stash occupancy for Path ORAM. We simulate
our Path ORAM for a single run for about 250 billion accesses after doing 1 billion accesses for

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

Path ORAM: An Extremely Simple Oblivious RAM Protocol 18:23

Fig. 6. Average bucket load of each level for different bucket sizes. The error bars represent the 1/4 and 3/4

quartiles. Measured for a worst-case (in terms of stash size) access pattern.

warming up the ORAM. It is well known that if a stochastic process is regenerative (empirically
verified to be the case for Path ORAM), the time average over a single run is equivalent to the
ensemble average over multiple runs (see Chapter 5 of Harchol-Balter (2013)).

Figure 3 shows the minimum stash size to get a failure probability less than 2−λ , with λ being
the security parameter on the x-axis. In Figure 5, we extrapolate those results for realistic values of
λ. The experiments show that the required stash size grows linearly with the security parameter,
which is in accordance with the main theorem in Section 5 that the failure probability decreases
exponentially with the stash size. Figure 4 shows that the required stash size for a low failure
probability (2−λ) does not depend on N . This shows that Path ORAM has good scalability.

Though we can only prove the theorem for Z ≥ 5, in practice, the stash capacity is not exceeded
with high probability when Z = 4. Z = 3 behaves relatively worse in terms of stash occupancy,
and it is unclear how likely the stash capacity is exceeded when Z = 3.

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

18:24 E. Stefanov et al.

We only provide experimental results for small security parameters to show that the required
stash size is O (λ) and does not depend on N . Note that it is by definition infeasible to simulate
for practically adopted security parameters (e.g., λ = 128), since if we can simulate a failure in any
reasonable amount of time with such values, they would not be considered secure.

A similar empirical analysis of the stash size (but with the path included in the stash) was done
by Maas et al. (2013).

7.2 Bucket Load

Figure 6 gives the bucket load per level for Z ∈ {3, 4, 5}. We prove in Section 5 that for Z ≥ 5, the
expected usage of a subtreeT is close to the number of buckets in it. And Figure 6 shows this also
holds for 4 ≤ Z ≤ 5. For the levels close to the root, the expected bucket load is indeed one block
(about 25% for Z = 4 and 20% for Z = 5). The fact that the root bucket is seldom full indicates
the stash is empty after a path write-back most of the time. Leaves have slightly heavier loads
as blocks accumulate at the leaves of the tree. Z = 3, however, exhibits a different distribution of
bucket load (as mentioned in Section 7.1 and shown in Figure 3, Z = 3 produces much larger stash
sizes in practice).

ACKNOWLEDGMENTS

We would like to thank Kai-Min Chung and Jonathan Katz for helpful discussions, and Kai-Min
Chung for pointing out that our algorithm is statistically secure.

REFERENCES

Miklós Ajtai. 2010. Oblivious RAMs without cryptogrpahic assumptions. In Proceedings of the 42nd ACM Symposium on

Theory of Computing (STOC’10). ACM, 181–190.

Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang, and Yan Huang. 2015. Practicing oblivious access

on cloud storage: The gap, the fallacy, and the new way forward. In Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security. ACM, 837–849.

Dan Boneh, David Mazieres, and Raluca Ada Popa. 2011. Remote Oblivious Storage: Making Oblivious RAM practical.

Manuscript. Retrieved from http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf.

Elette Boyle, Kai-Min Chung, and Rafael Pass. 2015. Large-scale secure computation: Multi-party computation for (parallel)

RAM programs. In Advances in Cryptology - Proceedings of the 35th Annual Cryptology Conference (CRYPTO’15), Part II.

Springer, 742–762.

Elette Boyle, Kai-Min Chung, and Rafael Pass. 2016. Oblivious parallel RAM and applications. In Theory of Cryptography

Conference. Springer, 175–204.

Elette Boyle and Moni Naor. 2016. Is there an oblivious RAM lower bound? In Proceedings of the 2016 ACM Conference on

Innovations in Theoretical Computer Science. ACM, 357–368.

Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova. 2016. Adaptive succinct garbled RAM or: How to delegate

your database. In Theory of Cryptography Conference. Springer, 61–90.

Ran Canetti and Justin Holmgren. 2016. Fully succinct garbled RAM. In Proceedings of the 2016 ACM Conference on Innova-

tions in Theoretical Computer Science (ITCS’16). ACM.

Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. 2015. Succinct garbling and indistinguishability

obfuscation for RAM programs. In Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC’15).

ACM, 429–437.

David Cash, Alptekin Küpçü, and Daniel Wichs. 2013. Dynamic proofs of retrievability via oblivious RAM. In Advances in

Cryptology (EUROCRYPT’13). Springer, 279–295.

Binyi Chen, Huijia Lin, and Stefano Tessaro. 2016. Oblivious parallel ram: Improved efficiency and generic constructions.

In Theory of Cryptography Conference. Springer, 205–234.

Benny Chor and Niv Gilboa. 1997. Computationally private information retrieval (extended abstract). In Proceedings of the

29th Annual ACM Symposium on Theory of Computing (STOC’97). ACM, 304–313.

Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private information retrieval. Journal of the ACM

(JACM) 45, 6 (1998), 965–981.

Kai-Min Chung, Zhenming Liu, and Rafael Pass. 2013. Statistically-secure ORAM with Õ (log2 n) Overhead. Retrieved from

http://arxiv.org/abs/1307.3699.

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
http://arxiv.org/abs/1307.3699

Path ORAM: An Extremely Simple Oblivious RAM Protocol 18:25

Kai-Min Chung and Rafael Pass. 2013. A Simple ORAM. Retrieved from https://eprint.iacr.org/2013/243.pdf.

Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Searchable symmetric encryption: Improved defini-

tions and efficient constructions. In Proceedings of the 13th ACM Conference on Computer and Communications Security.

ACM, 79–88.

Ivan Damgård, Sigurd Meldgaard, and Jesper Buus Nielsen. 2011. Perfectly secure oblivious RAM without random oracles.

In Proceedings of the 8th Conference on Theory of Cryptography (TCC’11). Springer-Verlag, Berlin, 144–163.

Jonathan Dautrich, Emil Stefanov, and Elaine Shi. 2014. Burst ORAM: Minimizing ORAM response times for bursty access

patterns. In 23rd USENIX Security Symposium. USENIX Association, 749–764.

Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling Ren, Elaine Shi, and Daniel Wichs. 2016. Onion ORAM:

A constant bandwidth blowup oblivious ORAM. In Theory of Cryptography. Springer, 145–174.

Devdatt P. Dubhashi and Desh Ranjan. 1998. Balls and bins: A study in negative dependence. Random Structures and Algo-

rithms 13, 2 (1998), 99–124.

Christopher W. Fletcher, Marten van Dijk, and Srinivas Devadas. 2012. A secure processor architecture for encrypted

computation on untrusted programs. In Proceedings of the 7th ACM Workshop on Scalable Trusted Computing. ACM,

3–8.

Christopher W. Fletcher, Muhammad Naveed, Ling Ren, Elaine Shi, and Emil Stefanov. 2015a. Bucket ORAM: Single online

roundtrip, constant bandwidth oblivious RAM. IACR Cryptology ePrint Archive (2015), 1065.

Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, and Srinivas Devadas. 2015b. Freecursive oram: [Nearly]

free recursion and integrity verification for position-based oblivious RAM. In Proceedings of the 20th International Con-

ference on Architectural Support for Programming Languages and Operating Systems. ACM, 103–116.

Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, Emil Stefanov, Dimitrios Serpanos, and Srinivas Devadas.

2015c. A low-latency, low-area hardware oblivious RAM controller. In 2015 IEEE 23rd Annual International Symposium

on Field-Programmable Custom Computing Machines (FCCM’15). IEEE, 215–222.

Sanjam Garg, Steve Lu, and Rafail Ostrovsky. 2015a. Black-box garbled RAM. In 2015 IEEE 56th Annual Symposium on

Foundations of Computer Science (FOCS’15). IEEE, 210–229.

Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. 2015b. Garbled RAM from one-way functions. In Pro-

ceedings of the 47th Annual ACM on Symposium on Theory of Computing. ACM, 449–458.

Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. 2016. TWORAM: Efficient oblivious RAM in two rounds

with applications to searchable encryption. In Annual Cryptology Conference. Springer, 563–592.

Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit Julta, Mariana Raykova, and Daniel Wichs. 2013. Optimizing

ORAM and using it efficiently for secure computation. In Privacy Enhancing Technologies. Springer, 1–18.

Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel Wichs. 2014. Garbled RAM revisited.

In Advances in Cryptology - EUROCRYPT - International Conference on the Theory and Applications of Cryptographic

Techniques. Springer, 405–422.

Oded Goldreich. 1987. Towards a theory of software protection and simulation by oblivious RAMs. In STOC. ACM, 182–194.

Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation on oblivious RAMs. Journal of the ACM

(JACM) 43 (1996), 431–473.

Michael T. Goodrich and Michael Mitzenmacher. 2011. Privacy-preserving access of outsourced data via oblivious RAM

simulation. In Automata, Languages and Programming. Springer, 576–587.

Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamassia. 2012. Privacy-preserving group data

access via stateless oblivious RAM simulation. In SODA. SIAM, 157–167.

S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana Raykova, and Yevgeniy Vahlis.

2012. Secure two-party computation in sublinear (amortized) time. In ACM Conference on Computer and Communications

Security (CCS’12). ACM.

Mor Harchol-Balter. 2013. Performance Modeling and Design of Computer Systems: Queueing Theory in Action. Cambridge

University Press.

Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access pattern disclosure on searchable encryption:

Ramification, attack and mitigation. In NDSS, Vol. 20, 12.

Marcel Keller and Peter Scholl. 2014. Efficient, oblivious data structures for MPC. In International Conference on the Theory

and Application of Cryptology and Information Security. Springer, 506–525.

Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. 2012. On the (in) security of hash-based oblivious RAM and a new bal-

ancing scheme. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 143–156.

Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari, and Elaine Shi. 2015. GhostRider: A hardware-

software system for memory trace oblivious computation. SIGPLAN Notices 50, 4 (March 2015), 87–101.

Jacob R. Lorch, Bryan Parno, James W. Mickens, Mariana Raykova, and Joshua Schiffman. 2013. Shroud: Ensuring private

access to large-scale data in the data center. FAST (2013), 199–213.

Steve Lu and Rafail Ostrovsky. 2013. How to garble RAM programs. In EUROCRYPT. Springer.

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

https://eprint.iacr.org/2013/243.pdf

18:26 E. Stefanov et al.

Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic, John Kubiatowicz, and Dawn Song. 2013.

PHANTOM: Practical oblivious computation in a secure processor. In Proceedings of the 2013 ACM SIGSAC Conference

on Computer and Communications Security (CCS’13). ACM.

John C. Mitchell and Joe Zimmerman. 2014. Data-oblivious data structures. In Theoretical Aspects of Computer Science

(STACS’14).

Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter. 2014. Dynamic searchable encryption via blind storage. In

IEEE Symposium on Security and Privacy (SP’14). IEEE, 639–654.

Rafail Ostrovsky. 1990. Efficient computation on oblivious RAMs. In STOC. ACM, 514–523.

Rafail Ostrovsky and Victor Shoup. 1997. Private information storage. In STOC. ACM, 294–303.

Rafail Ostrovsky and William E. Skeith, III.2007. A survey of single-database private information retrieval: Techniques

and applications. In Proceedings of the 10th International Conference on Practice and Theory in Public-Key Cryptography

(PKC’07). Springer-Verlag, 393–411.

Benny Pinkas and Tzachy Reinman. 2010. Oblivious RAM revisited. In Advances in Cryptology (CRYPTO’10). Springer,

502–519.

Ling Ren, Christopher Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten van Dijk, and Srinivas Devadas. 2015.

Constants count: Practical improvements to oblivious RAM. In 24th USENIX Security Symposium (USENIX Security’15).

USENIX Association, 415–430.

Ling Ren, Christopher W. Fletcher, Albert Kwon, Marten van Dijk, and Srinivas Devadas. 2017. Design and implementation

of the ascend secure processor. IEEE Transactions on Dependable and Secure Computing PP, 99 (2017).

Ling Ren, Christopher W. Fletcher, Xiangyao Yu, Marius van Dijk, and Srinivas Devadas. 2013a. Integrity verification for

path oblivious-RAM. In HPEC. IEEE, 1–6.

Ling Ren, Xiangyao Yu, Christopher W. Fletcher, Marten Van Dijk, and Srinivas Devadas. 2013b. Design space exploration

and optimization of path oblivious RAM in secure processors. In ACM SIGARCH Computer Architecture News, Vol. 41.

ACM, 571–582.

Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Rachel Lin, and Stefano Tessaro. 2016. TaoStore: Overcoming asyn-

chronicity in oblivious data storage. In IEEE Symposium on Security and Privacy (SP’16).

Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious RAM with O ((log N)3) worst-case cost. In

ASIACRYPT. Springer, 197–214.

Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. 2013. Practical dynamic proofs of retrievability. In Proceedings

of the 2013 ACM SIGSAC Conference on Computer and Communications Security. ACM, 325–336.

Emil Stefanov and Elaine Shi. 2012. Path O-RAM: An extremely simple oblivious RAM protocol. CoRR abs/1202.5150 (2012).

Emil Stefanov and Elaine Shi. 2013a. Multi-cloud oblivious storage. In ACM Conference on Computer and Communications

Security (CCS’13). ACM.

Emil Stefanov and Elaine Shi. 2013b. ObliviStore: High performance oblivious cloud storage. In 2013 IEEE Symposium on

Security and Privacy (SP’13). IEEE, 253–267.

Emil Stefanov, Elaine Shi, and Dawn Song. 2012. Towards practical oblivious RAM. In NDSS.

Xiao Wang, Hubert Chan, and Elaine Shi. 2015. Circuit ORAM: On tightness of the Goldreich-Ostrovsky lower bound. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM, 850–861.

Xiao Shaun Wang, Kartik Nayak, Chang Liu, T. H. Chan, Elaine Shi, Emil Stefanov, and Yan Huang. 2014. Oblivious data

structures. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. ACM, 215–226.

Peter Williams and Radu Sion. 2008. Usable PIR. In NDSS.

Peter Williams and Radu Sion. 2012. Single round access privacy on outsourced storage. In CCS. ACM, 293–304.

Peter Williams, Radu Sion, and Bogdan Carbunar. 2008. Building castles out of mud: Practical access pattern privacy and

correctness on untrusted storage. In CCS. ACM, 139–148.

Peter Williams, Radu Sion, and Alin Tomescu. 2012. Privatefs: A parallel oblivious file system. In Proceedings of the 2012

ACM Conference on Computer and Communications Security. ACM, 977–988.

Received April 2014; revised August 2017; accepted January 2018

Journal of the ACM, Vol. 65, No. 4, Article 18. Publication date: April 2018.

