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ABSTRACT

Trust and anonymity are both desirable properties on the
Internet. However, online services and users often have to
make the trade off between trust and anonymity due to the
lack of usable frameworks for achieving them both. We pro-
pose Opaak, a practical anonymous authentication frame-
work. Opaak enables its users to establish identities with
different online services while ensuring that these identities
cannot be linked with each other or their real identity. In
addition, Opaak allows online service providers to control
the rate at which users utilize their services while preserv-
ing their anonymity. Hence, allowing the service providers to
prevent abuse in the form of spam or Sybil attacks, which
are prevalent in such online services that offer anonymity.
Opaak leverages the mobile phone as a scarce resource com-
bined with anonymous credentials in order to provide these
features. We target two kinds of applications for Opaak and
identify their requirements in order to achieve both trust
and anonymity. We develop efficient protocols for these ap-
plications based on anonymous credentials. In addition, we
design an architecture that facilitates integration with ex-
isting mobile and web applications and allows application
developers to transparently utilize our protocols. We imple-
ment a prototype on Android and evaluate its performance
to demonstrate the practicality of our approach.
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1. INTRODUCTION
Trust and anonymity are often conflicting goals for Inter-

net users. One one hand, users wish to evaluate the trust-
worthiness of online reviews and recommendations and wish
to only establish relations with other trustworthy users. On
the other hand, users often wish to remain anonymous and
protect their online privacy. For example, users do not want
their activities being tracked by the websites they visit or
by online advertisement companies.

Our online privacy depends on how we manage our iden-
tities. A common approach to remaining anonymous online
is to use pseudonyms. However, pseudonymous identities
come at the expense of trust i.e., it is difficult to determine
whether a pseudonym has been created by a legitimate per-
son or for malicious purposes such as spam. One approach
to mitigate this problem is to employ trusted authorities
to certify or vouch for the validity of these pseudonyms.
Indeed, Douceur showed that Sybil attacks are always pos-
sible without a trusted authority to certify the uniqueness
of identities in the system (except under extreme and un-
realistic assumptions) [23]. Furthermore, a survey showed
that trusted certification has been cited as the most com-
mon approach to preventing Sybil attacks [28]. However, a
trusted certification approach usually comes at the expense
of anonymity.

Meanwhile, the mobile phone has become the most per-
sonal and most frequently used computing device for people
today. As a result, recent trends such as including near
field communication (NFC) capabilities indicate a move to-
wards the vision for the mobile phone to become one’s uni-
versal authentication device i.e., the“mobile wallet” [9]. Mo-
bile phones are also considered to generally be more secure
computing platforms than desktop computers [12]. This is
partly due to the fact that mobile phones have a more con-
trolled computing environment, where third-party applica-
tions are installed through a central application vetting au-
thority (e.g., Apple’s App Store). Most importantly, mobile
phones can serve as a natural form of scarce resource that
can defend against Sybil attacks i.e., people can only finance
a limited number of mobile phones.

For these reasons, websites currently employ mechanisms
such as SMS verification before users can utilize the services
they offer. For example, Craigslist [1] may require a mobile
phone number from a user. Craigslist sends a verification
code to the number and the user must submit this code
before they can post their ad. However, such a mechanism
also comes at the expense of anonymity i.e., Craigslist learns
the user’s mobile phone number.



Fortunately, there is a cryptographic mechanism that can
help called anonymous credentials [15, 17, 18]. Anonymous
credential schemes allow users to demonstrate possession of
a credential granted by a trusted authority without revealing
anything other than the fact that they own such a creden-
tial. We can use this tool to enable a trusted certification
approach together with the scarcity of mobile phones in or-
der to provide users with anonymity while preventing Sybil
attacks at the same time. In fact, anonymous credentials
have formed the basis for privacy-preserving digital iden-
tity management frameworks [16]. However, such frame-
works have very broad goals and focus on demonstrating
users’ attributes (e.g., age) to online services. Proving such
attributes in a privacy-preserving manner require complex
algorithms (e.g., proofs such as [4, 31]) which can become
impractical on the mobile phone.
In this paper, we propose a practical anonymous authen-

tication framework, Opaak (OPen Anonymous Authenti-
cation frameworK), that provides user’s with privacy and
anonymity online without the expense of trust. We devise
efficient protocols based on anonymous credentials that can
be deployed on the mobile platform by targeting specific but
practical kinds of applications.

1.1 Motivating Applications

Anonymous, unlinkable accounts across different websites.

Single sign-on authentication frameworks such as OpenID [6],
allow a user to authenticate to different websites using the
same credentials. However, the user’s identity is revealed to
the websites. Even if the user chooses fictitious identities,
these websites can link these identities to the same user.
Moreover, the websites where the user has created accounts
at can be tracked by the OpenID identity provider.
With Opaak, users can create anonymous accounts across

different websites and they cannot be linked with each other.
In addition, the Opaak anonymous identity provider does
not learn which websites where the user has created these
accounts.

Anonymous, unlinkable posts with rate limiting. User opin-
ions — such as votes, ratings, reviews, and recommenda-
tions — are important contents in online communities, such
as IMDB, Yelp, and Amazon. However, privacy concerns
may discourage users from contributing. For example, a
user may hesitate to rate a politically sensitive movie, or
to review a doctor specializing in HIV treatment. To pre-
serve anonymity, the user could use a different pseudonym
for each of her posts, but this would reduce the trustworthi-
ness of her posts, as malicious users could launch spam or
Sybil attacks.
Opaak allow users to anonymously contribute votes or rat-

ings in such online services. It guarantees that no two posts
from the same user are linkable. To prevent malicious users
from manipulating the ratings by aggressively spamming the
recommendation system, Opaak allows the site administra-
tor to limit the rate of user posts e.g., a user can contribute
at most k posts within a time period T .

1.2 Contributions
We develop Opaak, an anonymous authentication frame-

work that takes advantage of the mobile phone as a natural
form of scarce resource in order to limit anonymous identi-

ties on the Internet. More specifically, this paper makes the
following contributions:

• We demonstrate that applications based on full-fledged
anonymous credentials can be deployed on the smart-
phones with very practical performance. We define two
types of applications for Opaak and identify each of
their requirements in order to enable trust and anonymity
simultaneously. To the best of our knowledge, we are
among the first to do this along with [37].

• Opaak emphasizes the use of mobile phones as a scarce
resource to solve the Sybil problem on the Internet.
Although we may not be the first to make this obser-
vation, we are the first to demonstrate how to leverage
this fact while simultaneously respecting user privacy.

• We develop a set of protocols related to k-times anony-
mous authentication (k-TAA) schemes that are effi-
cient and practical on the mobile platform. There are
numerous existing k-times anonymous authentication
schemes however, they are not suitable for the mo-
bile platform precisely because of range proofs and the
state-of-the-art algorithms for doing this do not scale
well. We show that we can achieve rate limiting for
our targeted applications without resorting to range
proofs.

• We design an architecture for deploying Opaak that
facilitates integration with existing web applications.
Our proxy architecture allows application developers
who may not be cryptography experts to utilize Opaak
transparently. We believe our architecture is more
lightweight compared to existing anonymous creden-
tial based systems as a result of our focus on smart-
phone deployment and our well-defined set of target
applications.

• Finally, we implement a prototype of Opaak on An-
droid, evaluate its performance and show that it is
feasible for real-world deployment.

2. APPLICATIONS AND REQUIREMENTS
Opaak has three main participants namely the users, rely-

ing parties and anonymous identity providers. Relying par-
ties offer some form of service that users wish to use (e.g.,
Wikipedia [8], Craigslist [1]). People who wish to post ad-
vertisements on Craigslist would be considered users. An
anonymous identity provider (AIP) is a trusted third party,
which vouches for the identity of a user. For example, a
cellular service provider might serve the role of an anony-
mous identity provider and certify that a user is one of its
subscribers.

Figure 1 shows a high-level overview of the interactions
between the participants. First, users join the system by
registering with an AIP and thus acquiring an anonymous
credential. The anonymous credential forms the basis for
users to create cryptographic proofs that enable them to
anonymously authenticate to relying parties so they can use
the services they offer. At the same time, relying parties
are able to verify properties about the user that allow them
to prevent abuse (e.g., spam) while respecting the user’s
privacy.

Our main goal is to design an authentication framework
with privacy-preserving and single sign-on (SSO) properties.
However, since anonymity necessarily introduces an avenue
for abuse, we must go a step further than existing SSO
frameworks (e.g., OpenID [6]) and provide mechanisms to



Figure 1: Overview of Opaak. A user is issued a credential
by the anonymous identity provider upon presenting their
phone number (top). The user can then anonymously uti-
lize services offered by relying parties like posting messages
(bottom).

protect relying parties from spam and Sybil attacks. To de-
scribe our goals, we logically separate them using two kinds
of applications.
First, Opaak supports anonymous single sign-on authen-

tication, where users can register anonymous accounts at
relying parties then login to them afterwards. An example
would be a service like Wikipedia where users would like to
edit entries anonymously but at the same time, Wikipedia
would like to maintain some form of accountability for edits
from the users.
Second, Opaak supports anonymous message boards where

users can post messages, rate a product, vote on a poll etc.
These types of applications offer services but don’t neces-
sarily need the users to create an account with them. An
example would be a service such as Craigslist where users
can post advertisements. As shown by some of the mech-
anisms they have employed such as mobile phone number
and e-mail address verification, spam and Sybil attacks are
a concern for Craigslist.
We note that the two applications are not mutually exclu-

sive. A relying party can adopt both anonymous SSO au-
thentication protocols where a user has one or more unlink-
able accounts, as well as the anonymous message board pro-
tocols where a user may anonymously post messages without
being logged in.

In addition to the goals we detail below, we also make it
our goal to make these applications accessible to developers
who may not be experts in cryptography. Our framework
must be designed such that developers can transparently
utilize our protocols and easily integrate them into their ap-
plications.

2.1 Anonymous Single Sign-On Requirements
Some examples of existing SSO frameworks include OpenID

and Facebook Connect [3]. In these frameworks, there are
one or more identity providers such as Google or Facebook
by which users consolidate their identity or login name.
When users wish to authenticate with a relying party, in-
stead of having a different usernames and passwords at each
relying party, the user can simply login to Google’s OpenID
service, or use Facebook Connect. Hence, the identity provider
(Google or Facebook) vouches for the user’s identity to the
relying party. Unfortunately, these SSO frameworks were
not designed with user privacy in mind.

2.1.1 Privacy issues

Today’s SSO frameworks raise important privacy concerns
both for users and relying parties. A user’s accounts with
different relying parties can be linked with each other, and
sometimes even linkable to their real identities. Consider
users who use the Facebook Connect feature to login to dif-
ferent relying parties, their accounts and activities at these
relying parties could be easily linked to their Facebook iden-
tity. For example, relying parties could collude to find out
which users they have in common. Furthermore, since the
majority of users use their real names on Facebook, these
accounts can then be linked to their real identities.

The identity provider can track which relying parties a
user is receiving services from. This presents a privacy con-
cern both for the user and for the relying party. Clearly,
users sometimes wish to remain anonymous when they visit
certain kinds of relying parties (e.g., pornographic websites,
or alcohol self-help groups). The relying party may also wish
to hide from the identity provider how much traffic or users
they have, as this can be sensitive business information.

Therefore, we believe that there is a need for an anony-
mous SSO framework. Such a framework should offer the
following privacy and security guarantees.

2.1.2 Privacy requirements

Unlinkability across different relying parties. We wish to
guarantee complete unlinkability for a user’s accounts at dif-
ferent relying parties. Given an account at one relying party,
there should be no way to determine whether an account at
another different relying party belongs to the same user or
not. In this way, a user’s account at an alcohol self-help
group website cannot be linked to his professional profile on
sites such as LinkedIn [5].

Transactional privacy from the identity provider. The iden-
tity provider should not learn which relying parties a user
receives service from or when a user logs in to a certain
website. This protects the privacy of both the user and the
relying party.

Unlinkability between different accounts with the same re-

lying party. If a user registers more than one account at
the same relying party, these accounts should be completely
unlinkable. For example, if a user wishes to register two ac-



counts with Wikipedia for editing, one under his real name,
and another under a fake name, these two accounts should
not be linkable to the same user.

2.1.3 Misuse prevention requirements

While enabling anonymity, Opaak must also prevent abuse
in the form of Sybil attacks [23]. These attacks occur when a
user is able to create multiple accounts with a relying party
thus creating Sybil identities with that relying party. More
specifically, we identify our requirements for preventing mis-
use below.

Limited number of anonymous identities per user. When
a user joins the system and registers with an AIP, the AIP
must request that the user demonstrate possession of a scarce
resource, such as a valid phone number or a credit card num-
ber. In this way, a user can only have as much anonymous
identities in the system as the resources they actually pos-
sess and effectively limiting the capability of a user to create
Sybil identities.

Limited number of accounts with the same relying party. Re-
lying parties may wish to limit how many accounts each user
can have. Currently, relying parties achieve this through
various approaches. Some common approaches include the
CAPTCHA [39], the verification of phone numbers via SMS,
or the verification of credit card numbers.
We recognize that in some cases, multiple accounts might

be desirable like in the Wikipedia example above. In Opaak,
we do not prevent users from creating multiple accounts but
seek to do it in a controlled fashion with strong guarantees
about identities in the system. Opaak allows each user to
have up to k accounts at a relying party, where each rely-
ing party can choose its own value of k. In addition, if an
account is found to be misusing or abusing the service, the
relying party can simply freeze that account.

2.2 Anonymous Message Board Requirements
The second type of applications we wish to support are

anonymous message board like applications. In these types
of applications, users perform actions at a relying party
where accounts are not necessary. For example, a user may
wish to post a message anonymously, anonymously rate a
product or cast a private vote.

2.2.1 Privacy requirements

Unlinkability for any two actions. In anonymous message
board type of applications, we wish to ensure that any two
actions (e.g., messages posted, ratings, or votes) of the same
user, at the same or different relying parties, are completely
unlinkable. Given an action at one relying party, there
should be no way for the same relying party or another re-
lying party to determine whether another action was per-
formed by the same user or not.

Transactional privacy from the identity provider. Similar
to the anonymous SSO application, we also wish to achieve
transactional privacy against the identity provider, so that
the identity provider does not learn the relying parties uti-
lized by a user.

2.2.2 Misuse prevention requirements

Similar to the anonymous SSO application, our second
type of application must also prevent abuse in the form of

Sybil attacks. In addition, Opaak must include a mechanism
to throttle the usage of services offered by the relying parties
to prevent spam.

Limited number of anonymous identities per user. We also
wish to defend against Sybil attacks and ensure that each
user can only have a limited number of anonymous identi-
ties. As discussed above, this can be achieved by requiring
that the user demonstrate possession of some scarce resource
such as a valid phone number or credit card, when the user
registers with the AIP.

Spam prevention. Anonymity is seemingly contradictory to
the notion of spam prevention. If the relying party does not
learn the identity of the user, how can it throttle the rate at
which a user casts votes or posts messages? This question
has been answered by earlier work which demonstrates how
to realize k-times anonymous authentication [15,33]. Opaak
also provides spam prevention and rate throttling features
through its rate limiting pseudonyms. We elaborate on this
technique in Section 3.

2.3 Non-Goals
We consider the following goals to be orthogonal to our

efforts, and outside the scope of this paper.
We do not consider network-based attacks on the anonymity

of users such as correlating the IP addresses from which re-
quests come from. When requests are generated from mobile
phones, today’s cellular infrastructure provides some natu-
ral protection against IP correlation attacks, as many mo-
bile phones share the same public IP address of the Internet
gateway at their cellular provider. Furthermore, existing
mechanisms to mitigate these attacks such as Tor [22] can
be easily composed with our system so that relying parties
do not trivially see the originating IPs of user requests.

Device fingerprinting is another potential approach to iden-
tify the origin of network packets. This class of attacks
is very challenging to defend against especially when they
are based on physical properties of a device (e.g., clock
skew [27]). We do not consider such attacks.

3. OPAAK PROTOCOLS
In this section, we describe the protocols we developed in

order to realize our target applications.

3.1 Preliminary
First, we briefly describe zero-knowledge proofs and the

CL-signature scheme. For a more comprehensive and formal
description of these cryptographic techniques, we refer the
reader to the specification document for the Idemix crypto-
graphic library [26].

3.1.1 Zero-knowledge Proofs

A zero-knowledge proof of knowledge (ZKPK) is a two-
party protocol where a prover convinces a verifier knowledge
of a secret value without disclosing the secret value itself.
More concretely, consider a prover Alice with a secret key x

and public key y = gx. A verifier Bob only knows the values
(g, y) but through a ZKPK, Alice can convince Bob that she
knows x such that y = gx without revealing x itself.

In describing our protocols, we use the notation by Ca-
menisch and Stadler [19]. Specifically, to denote the ZKPK
of integers α and β such that y = gαhβ and u < α < v

holds, where y, g, h are elements of a mathematical group



G = 〈g〉 = 〈h〉 we would write the following:

PK{(α, β) : y = g
α
h
β ∧ (u < α < v)}

We use the various ZKPK techniques available in the
Idemix library implemented using a common three-move
zero-knowledge protocol [32]. As the name suggests, these
protocols require three rounds of communication. Fortu-
nately, they can be made non-interactive (reduced to one
round) by means of the Fiat-Shamir heuristic [24], and we
denote these with SPK for “signature proof of knowledge”
instead of PK. In addition, there are techniques imple-
mented in the Idemix library which allows us to compose
multiple ZKPK into a single proof for efficiency. We omit
the details of these techniques in the description of our pro-
tocols for simplicity.

3.1.2 CL-signatures

The signature scheme proposed by Camenisch and Lysyan-
skaya [18] is a powerful technique that allows a user to prove
possession of a signature to a verifier without revealing the
underlying message or even the signature itself using effi-
cient ZKPK. In the scheme, the public key of a signer is of
the form (n,R, S, Z), where n is a special RSA modulus of
length ln and R,S, Z ∈ QRn are generators of QRn, the
group of quadratic residues modulo n. A CL-signature over
a message m is of the form (A, e, v). The value A is com-
puted such that Ae ≡ RmSvZ (mod n) where v is a random
number and e is a random prime number with bitlengths lv
and le, respectively.
The scheme includes the signing and verification algo-

rithms i.e., CL-Sign andCL-Verify, respectively. In Opaak,
we utilize the variant of the CL-signature protocols where
the signer and the verifier do not learn the value of the mes-
sage m. Instead, the signers and verifiers can use ZKPK
to ascertain m. In addition, the scheme also includes a CL-

Show algorithm. This algorithm allows the signature holder
to prove to a verifier that it has obtained a signature from a
signer without revealing the message or the signature itself
i.e., the proof of possession mentioned above. Note that im-
plicit in the CL-Show algorithm is verification of the signa-
ture with CL-Verify. We denote a (non-interactive) proof
of possession of a CL-signature over a message m as follows:

SPK{(e,m, v) : Ae ≡ R
m
S

v
Z mod n}

3.1.3 Rate Limiting Pseudonyms

At the foundation of the Opaak protocols lies our scheme
for forming authentication tokens, which we call rate limiting

pseudonyms. Simply put, a rate limiting pseudonym (rnym)
is globally unique identifier that must belong to a single user
i.e., a user can create multiple rnym but an rnym cannot be
the same for two users (or even the same user, given different
parameters). In the following sections, we show how this
simple property enables us to develop protocols that enable
anonymity while preventing spam and Sybil attacks at the
same time. We discuss the details of how an rnym is formed
below.
First, we define some public parameters of the scheme.

We denote the group of non-negative integers Z∗
Γ with order

Γ − 1. The public parameters consists of (Γ, ρ, g), where g

is a random generator 〈g〉, which is the subgroup of Z∗
Γ of

prime order ρ. Accordingly, the bitlengths of Γ and ρ are
given by lΓ and lρ. We also employ a cryptographic hash
function H mapping {0, 1}∗ → ZΓ.

Now, given a user’s secret key uk and an arbitrary string
s, we can form an rnym as follows:

grnym = H(s)(Γ−1)/ρ

rnym = g
uk
rnym mod Γ

Rate limiting pseudonyms have the following useful prop-
erties we take advantage of: (1) an rnym is unique with
respect to uk and the string s hence, two rnym formed with
different (uk, s) pair, cannot be linked with each other, (2)
two rnym formed with the same uk and s pair will always be
the same. (3) following from these properties, other users
who do not possess uk can form the set of rnym of the user
who holds uk as a secret.

Next, we introduce the notion of rate limiting strings (rls).
Rate limiting strings are strings which encode some form of
counting, the very basic of which could be “1”, “2”, or “3”
etc. In our approach, we use a concatenation of the domain
name of a relying party, time period identifiers and counters
to form the rate limiting string, depending on our target ap-
plication. For the relying party at anonymous.posts.com,
during time period T , a user posting for the i-th time would
form the following rls =“anonymous.posts.com||T ||i” to be
allowed to post a message. Indeed, an rnym as defined in
the equation above is the same as the “domain pseudonym”
feature of the Idemix library [26], where s corresponds to
the domain name of a website. However, by defining the
meaning of the input to the hash function H more specifi-
cally and using rate limiting strings instead, we are able to
create the protocols necessary for our target applications.

This way of forming identifiers is very similar to the au-
thentication tokens or tags used in anonymous blacklisting
schemes [34–36] and the first k-times anonymous authenti-
cation (k-TAA) scheme by Teranishi [33]. The key difference
is that in our protocols, we do not hide the base g and how
it was formed i.e., it is a public parameter. Hiding the base
g would introduce more complex ZKPK as in the anony-
mous blacklisting and k-TAA schemes. Indeed, not hiding
the base weakens our definition of anonymity slightly and
the keen reader might have noticed that an rnym is not fully
anonymous. We discuss this issue further in Section 6.

3.2 Setup
Recall that Opaak has three main participants which in-

clude the users, relying parties and the anonymous identity
provider (AIP). In the setup phase, the participants generate
cryptographic keys and agree on system parameters.

First, the system parameters are generated and agreed
upon by all participants. The AIP generates the public
group parameters (Γ, ρ, g) necessary for the rnym scheme. In
addition, it is necessary to define the bitlengths ln, le, lv, lΓ, lρ,
which determine the security of the system. In the case of
multiple AIPs, the federation must agree on these values.
For a more comprehensive list of these parameters, we refer
the reader to the Idemix specification [26].

Next, the participants generate their respective crypto-
graphic keys. The AIP generates its keypair (sk, pk) and
publishes its public key necessary for the CL-signature scheme
pk = (n,R, S, Z). Users generate a master secret uk upon
joining the system perhaps via downloading the credential
service smartphone application of an AIP. Relying parties
do not require cryptographic keys and must simply obtain
(securely) a copy of the system parameters described above.



3.3 Registration
The registration protocol is executed between a user Alice

and an AIP as she joins the system. This process is analo-
gous to the part of the login procedure in conventional SSO
frameworks when a user logs in to the identity provider in-
stead of the relying party. We note that unlike existing SSO
frameworks, this procedure is only done once in Opaak. In
fact, this is key to achieving transactional privacy.
As described in Section 2, we would like to limit the

number of anonymous identities that a user can assume in
Opaak. This both protects against Sybil attacks and assures
relying parties that the users they are serving correspond to
real human beings, or at least a close approximation. To
achieve this, Opaak requires users to demonstrate possession
of some scarce resource (ResourceName). Some examples of
the scarce resource include the user’s mobile phone num-
ber or the user’s International Mobile Subscriber Identity
(IMSI).
The protocol enforces that each user (with one unit of

resource) can only register up to k times with an AIP. Of
course, ideally k = 1 but we allow for flexibility depending
on the policies an AIP would like to implement.

1. Alice initiates the protocol by sending the AIP a reg-
istration request and ResourceName.

2. The AIP maintains a database of ResourceName it has
seen. If the ResourceName submitted by Alice has been
> k times, then it terminates the protocol and returns
failure to Alice.

3. The AIP must verify if ResourceName is valid. For
example, with mobile phone numbers, the AIP could
send an SMS message with a verification code. If the
verification fails, then it terminates the protocol and
returns failure to Alice.

4. Next, the AIP adds ResourceName to its database or
updates its count.

5. At this point, the AIP has some assurance that Al-
ice is a real person via ResourceName and proceeds
to grant Alice a credential. Now, Alice and the AIP
execute the CL-Sign algorithm. At the successful ter-
mination of this protocol, Alice obtains a CL-signature
over her secret key uk of the form (A, e, v) such that
Ae ≡ RukSvZ mod n. For the rest of the paper, we
may refer to this CL-signature as Alice’s anonymous
credential or credential for brevity.

6. Alice saves (A, e, v) and keeps it secret.

3.4 Anonymous SSO: Registering accounts
Most relying parties require users to create an account

on their site before they can give them access to their ser-
vices. This registration protocol is executed between a user
Alice and a relying party whenever Alice wishes to create a
new account. We emphasize that the AIP is not involved in
this protocol unlike existing SSO frameworks. In fact, the
AIP is not involved in the any of the remaining protocols to
be described i.e., it is only needed when Alice obtains her
anonymous credential.
Similar to the AIP, relying parties may have different

policies regarding users creating multiple accounts however,
Opaak seeks to prevent Sybil attacks while simultaneously
enabling anonymity. Taking this into consideration, the pro-
tocol ensures that each user can only create up to k anony-
mous accounts with a the relying party i.e., a malicious user
who tries to create more than k accounts can be detected.

The relying party defines its parameters dom for its do-
main name and k for the maximum allowable anonymous
accounts per user.

1. Alice downloads the parameters dom and k.
2. Alice chooses a fresh i such that 1 ≤ i ≤ k i.e., an i

value that she has not used to to create an account
with yet. This means that Alice must keep track of
the i values that she has used so far.

3. Alice forms the corresponding rnym as follows:

grnym =H(dom||i)(Γ−1)/ρ

rnym =g
uk
rnym mod Γ

4. Alice sends an account creation request to the relying
party along with an optional FriendlyName.

5. Alice creates a proof of possession of her credential
from the AIP and a ZKPK of her master secret used
to form rnym as follows:

SPK{(e, uk, v) : Ae ≡ R
uk
S

v
Z mod n ∧ g

uk
rnym mod Γ}

Alice sends the proof to the relying party. As a result
of this proof, the relying party learns rnym, and the
values dom and i used to form it.

6. The relying party verifies the proof and checks that
the parameters are valid i.e., dom is the correct do-
main name and 1 ≤ i ≤ k. If the proof verification
fails or the parameters are invalid, then the protocol is
terminated and the relying party returns failure to
Alice.

7. The relying party now checks the database it main-
tains of rnym it has already seen. If the rnym is valid,
then it adds it to the database together with Friendly-

Name associated with it and returns success to Alice.
Otherwise, the relying party returns failure.

3.4.1 Friendly names

An rnym is actually a very large integer value with a long
string representation and might not be user friendly. For
this reason, Opaak allows users to specify human-readable,
friendly names (i.e., username) for their accounts. For ex-
ample, a Wikipedia user may want to be known under a pen
name. Similarly, a friendly name can also be an email ad-
dress, or the user’s real name. The relying party saves the
mapping between each account’s rnym and friendly name. Of
course, this has direct privacy implications on the anonymity
of the account. We discuss the privacy issues related to en-
abling friendly names in Section 6.

3.5 Anonymous SSO: Logging in
This authentication protocol is executed between a user

Alice and a relying party. When Alice wishes to login to an
account she has created with the relying party (using the
previous protocol), she proves possession of her anonymous
credential and shows a valid rnym along with a ZKPK of her
master secret used to form the rnym. We describe the step
by step process below.

The relying party defines its parameters dom for its do-
main name and k for the maximum allowable anonymous
accounts per user.

1. Alice downloads the parameters dom and k.
2. Alice keeps track of the i values corresponding to the

accounts she has created with the relying party. She
looks up the correct i optionally corresponding to Friend-
lyName.



3. Alice forms the valid rnym as follows:

grnym =H(dom||i)(Γ−1)/ρ

rnym =g
uk
rnym mod Γ

4. Alice creates a proof of possession of her credential
from the AIP and a ZKPK of her master secret used
to form rnym as follows:

SPK{(e, uk, v) : Ae ≡ R
uk
S

v
Z mod n ∧ g

uk
rnym mod Γ}

Alice sends this proof to the relying party along with
a login request and the correct FriendlyName. As a
result of this proof, the relying party learns rnym, and
the values dom and i used to form it.

5. The relying party verifies the proof and checks that
the parameters are valid i.e., dom is the correct do-
main name and 1 ≤ i ≤ k. If the proof verification
fails or the parameters are invalid, then the protocol is
terminated and the relying party returns failure to
Alice.

6. The relying party has authenticated Alice and must
simply look up the rnym entry in its database (and
optionally Alice’s FriendlyName). If rnym is not in the
database then Alice has made an error and has tried to
authenticate with an i value that she has not used to
create an account with the relying party. The relying
party may proceed with the previous registration pro-
tocol and add the rnym entry to its database or simply
terminate the protocol and return failure to Alice.

7. After the relying party has retrieved the account in-
formation pertaining to rnym, then the relying party’s
application protocols can proceed as regularly. For ex-
ample, the relying party could send back a unique to-
ken to establish an HTTP session with Alice.

3.6 Periodic k-Times Anonymous Authentica-
tion

The second class of applications targeted by Opaak are
those where the relying party offers services where users
don’t necessary need to create accounts are their site such
as posting messages, reviews, ratings, or casting votes. En-
abling anonymity for these kinds of applications means that
we must prevent spamming behavior from malicious users as
well. Below we describe how Opaak reconciles between the
seemingly conflicting goals of anonymity and spam control.
The relying party publishes its parameters dom for its

domain name and k for the maximum allowable requests per
time period T . For example, if Craigslist would like to allow
users only one advertisement post per hour, then k = 1 and
the time period identifier T would be updated every hour.
The only requirement for T is that it is a unique identifier
the simplest example of which is a timestamp. The protocol
ensures that a user Alice can only create one valid rnym per
time period T .

1. Alice downloads the relying party’s parameters dom,
k and current time epoch identifier T . Note that a
k is only valid for the current time epoch i.e., a rely-
ing party can change its policy at every time epoch if
it wishes. For example, if the k = 1 for the current
time period, the relying party can easily change it to
k = 2 for the next time period without any problems
whatsoever. This means that Alice cannot cache these
parameters.

2. Alice must keep track of the i values she has used so
far for the current time period. Alice chooses a fresh
i such that 1 ≤ i ≤ k i.e., an i value that she has not
used to issue a request so far.

3. Alice forms a valid rnym as follows:

grnym =H(dom||i||T )(Γ−1)/ρ

rnym =g
uk
rnym mod Γ

4. Alice creates a proof of possession of her credential
from the AIP and a ZKPK of her master secret used
to form rnym as follows:

SPK{(e, uk, v) : Ae ≡ R
uk
S

v
Z mod n ∧ g

uk
rnym mod Γ}

Alice sends this proof to the relying party along with
her request (e.g., a message for an anonymous message
board application). As a result of this proof, the re-
lying party learns rnym, and the values dom, i and T

used to form it.
5. The relying party verifies the proof and checks that the

parameters are valid i.e., dom is the correct domain
name, 1 ≤ i ≤ k and T is the current time epoch. If
the verification fails, then the protocol is terminated
and the relying party returns failure to Alice.

6. The relying party searches its database for the current
time epoch and checks whether it has seen rnym before.
If rnym is not in database then it can proceed to grant
Alice’s request (e.g., add the message to it’s message
board) and return a success status to Alice. Other-
wise, Alice is attempting to reuse the rnym and the
protocol terminates and a failure status is returned
to Alice.

Our technique can be thought of as a combination of the
schemes proposed by Teranishi et. al. [33] and Camenisch
et. al. [15]. However, it is more efficient since we don’t
require complex ZKPK (e.g., proving a number lies within a
given range [4, 31]). Moreover, the penalty for misbehavior
is less severe i.e., we do not de-anonymize (by revealing the
public key of) a misbehaving user. We discuss the privacy
implication of this tradeoff for efficiency in Section 6.

4. OPAAK ARCHITECTURE

4.1 Components
Figure 2 shows the architecture of Opaak and an overview

of how the components interact with each other. There are
three major components (each corresponding to the partic-
ipants in the system): a relying party (RP) application, a
mobile phone (users), and the AIP application. An RP ap-
plication (or app) is composed of a mobile phone app and
a web app. Our approach allows RP apps to utilize our
protocols transparently. The Opaak components serve as
a proxy for the requests carried out between the RP mo-
bile phone app and the RP web app. In other words, we
augment the existing communication between the RP app
components with the Opaak protocols by sitting in between
the RP phone app and the RP web app. This approach lends
itself to compatibility with current systems and incremental
deployment since existing RP apps would require minimal
modification in order to use our protocols.

We now describe the function of each component. First,
the AIP application is a web service consisting of the Reg-
istration Service, which executes the AIP side of the reg-



Figure 2: Architecture components. (a) User registers with
an AIP through the Credential Service. (b) Phone app sends
a request. (c, d) Credential Service runs Opaak protocols
with the Verification Service. (e) Verification Service for-
wards the request to the web app.

istration protocol. It is also responsible for publishing the
public parameters of the system (e.g., the RSA modulus n).
Next, the mobile phone is responsible for interacting with
the other components on behalf of the user. It consists of
RP mobile phone apps which can utilize the Opaak pro-
tocols transparently through the Credential Service. The
Credential Service is the main software component on the
phone running all the protocols on behalf of the user. It
registers the user with an AIP and obtains an anonymous
credential by communicating with the Registration Service.
It is also responsible for controlling access to the Opaak
cryptographic material and keeping them privy to the other
components. When using relying party services, it takes the
requests from RP phone apps and executes the protocols
with the Verification Service on the RP web app side. Fi-
nally, the Verification Service is responsible for maintaining
the database of rnym and forwarding requests (upon suc-
cessful execution of the protocols) to the RP web app. In
the case of the anonymous SSO, the rnym could be exported
since the RP app would need to use them as identifiers for
its own database.
As a concrete example, consider a simple online message

board RP app. It has a mobile phone app that takes an
input message from the user, sends it as an HTTP POST
request to a web app, which then takes care of displaying
it on a webpage. From Figure 2, the RP app can be easily
modified to allow anonymous posts (e.g., one post every five
minutes) as follows:
(a) To participate, a user first registers with an AIP Opaak

through the Credential Service. At the end of the proto-
col, the Credential Service saves the user’s master secret
and anonymous credential. This is only done once, for
example, a cellular service provider serving as an AIP
could distribute phones with the registration protocol
already completed.

(b) The RP phone app (instead of sending the POST re-
quest directly to the RP web app) sends the message to
the Credential Service. Of course, the RP phone app

must let the Credential Service know the Internet loca-
tion of the Verification Service. For example, the request
to the Credential Service might look like the follow-
ing: Request(“Post this message!”, http://anonymous.
posts.com/verify).

(c) The RP web app publishes k = 1 and the current time
period identifier T (updated every five minutes) through
the Verification Service. The Credential Service authen-
ticates with the Verification Service using the periodic
k-times anonymous authentication protocol described in
Section 3.

(d) Upon successful execution of the protocol, the Creden-
tial Service can proceed to send the message from the
RP phone app to the Verification Service.

(e) Finally, the Verification Service forwards the message to
the RP web app so it can proceed as originally intended.

We note that the RP phone app does not need to know
about the first step, (a). It simply discovers the Credential
Service on the phone and uses it.

4.2 Practical Considerations
In this section, we describe several practical and usabil-

ity considerations that result from our mobile phone based
architecture.

4.2.1 Credential Access Control

The Credential Service on the phone must control access
to the user’s master secret and anonymous credential. We
can leverage several features of modern mobile operating
systems (OS) such as Android. We describe them below
assuming a deployment of the Credential Service as an An-
droid app.

First, Android apps execute in a sandbox and are isolated
from other apps on the phone. By default, only the Android
app itself can access its resources such as files. We can rely
on Android to enforce this mechanism so that no other third
party RP phone app can read or write the files containing
the user’s master secret and anonymous credential.

Second, Android allows apps to communicate with each
other through well-defined interfaces i.e., Android apps can
call other Android apps. Moreover, it allows passing param-
eters to callee applications through generic “bundles”. This
feature actually lends itself well to our proxy architecture.
RP phone apps can encapsulate their web requests in bun-
dles and pass them along to the Credential Service to be
forwarded to the RP web app.

Third, Android apps can declare custom permissions that
they could require from other applications. For example, a
Credential Service Android app can declare a custom per-
mission android.USE_CREDENTIAL_SERVICE and require that
other apps that would like to call it to declare this permis-
sion in their manifest. Android can enforce this permission
check during installation of the RP phone app hence, only
apps that the phone owner has allowed to use this custom
permission would be able to use the Credential Service.

4.2.2 Registration using SMS messages

Recall that an AIP must require users to demonstrate
possession of scarce resource such as a valid mobile phone
number as a way to defend against Sybil attacks. To make
the registration process more usable on a mobile phone, we
propose the following method which minimizes user involve-
ment.



Recall that the user and AIP execute the CL-Sign al-
gorithm during registration. One possible method is for the
AIP to piggyback the mobile phone number verification onto
the CL-signing protocol. Without going into much detail, in
the last step of this protocol, the AIP sends the user a part
of the CL-signature necessary for the user to execute further
steps of computation before the actual CL-signature is ob-
tained. The AIP can split this last part of the CL-signature
C into two random shares, a small number s, and a larger
share t, such that C = s + t. The smaller s will be sent
over an SMS message, while t is sent directly over a data
connection where the Credential Service receives it directly.
We assume that the Credential Service is granted permis-
sion to read SMS messages, such that it can read the share
s directly from the received SMS message, without having
to prompt the user. In this way, the Credential Service can
compute C = s + t, and then to proceed to computing the
final CL-signature.
Alternatively, the AIP can simply send a verification code

over SMS which the Credential Service reads and sends back
to the AIP for verification. However, this approach intro-
duces one more round trip than the above.

4.2.3 Defense against Device Theft

When storing the credential on the mobile phone, a major
concern is device theft. Absent of any protection, if a legit-
imate user’s device is captured by a malicious party, the
malicious party will be able use the credential and imper-
sonate the user when logging onto websites. The following
methods can help mitigate the device theft problem.
First, we can employ conventional mechanisms such as

master passwords. We may require that the user enter a
master password on the phone during any authentication
request. In addition, to prevent a malicious party from triv-
ially reading credential from the phone’s storage, we can also
encrypt the credential under a secret key generated from the
user’s master password.
Second, we can employ credential revocation mechanisms.

The Idemix library supports protocols for updating an ex-
isting credential i.e., the user simply re-runs parts of the
CL-Sign algorithm. This feature can be used to implement
credential revocation. We can add an expiration date to the
basic anonymous credential used by Opaak. When the date
expires, the credential is rendered invalid and the user must
re-run the registration protocol with the AIP. Clearly, there
is trade-off between mitigating the problems of device theft
effectively and efficiency. The smaller the time window for
expiration is, the better for defending against device theft.
Otherwise, it would require more resources on the AIP’s
part to enable frequent re-runs the registration protocol to
re-validate the user’s credential. Indeed, one of the advan-
tages of our approach is that the user only needs to register
with the AIP once.

5. IMPLEMENTATION AND EVALUATION
To evaluate the practicality of our approach, we imple-

mented a prototype which includes both mobile and web
applications. We used the Identity Mixer cryptographic li-
brary version 2.3.2 for Java to implement the ZKPK and CL-
signature cryptographic operations. To implement our web
applications, we used the Django framework. However, to
carry out the actual cryptographic operations on the server
side, we simply wrote Java programs that were called by

Django applications. A more ideal solution would be to
leverage projects like Jython but as a first step, we opted
for less engineering overhead but even our unoptimized im-
plementation performs well.

5.1 Protocol Parameters
We developed a Java program to generate the necessary

parameters discussed in Section 3. First, we set the bitlengths
for the rnym parameters to be lΓ = 1632 and lρ = 256
and the bitlengths for the CL-signature parameters to be
ln = 2048, le = 120 and lv = 2724. We follow the rec-
ommendations for strong security parameters in the Idemix
specification. The program computes the group parameters
(Γ, ρ, g) and generates the the public-private key pair for an
AIP where the public key is (n,R, S, Z).

5.2 Setup and Registration
We developed a web application that implements the Reg-

istration Service for an AIP. Our AIP assumes all users re-
questing a credential are legitimate i.e., it does not require
the user to demonstrate possession of a scarce resource such
as a phone number. We believe this is reasonable for an
experimental prototype. However, in a real world setting,
this is absolutely necessary, otherwise Opaak does not have
a basis for its guarantees against spam and Sybil attacks.

5.3 Anonymous Posts Website
We developed an example relying party, which lets users

anonymously posts messages to a public forum using our
mobile phone application. The website demonstrates the pe-
riodic k-times anonymous authentication protocol described
in Section 3. It allows up to 1000 posts per hour i.e., k =
1000 and the time epoch identifier T is updated every hour.
It can be viewed live at http://trident.cs.ucdavis.edu/
website/posts.

The website includes a posts and a verify web applica-
tion. The posts application is a standard database driven
website which displays messages posted by users. The ver-

ify application unsurprisingly implements the Verification
Service. Upon successful execution of the protocols with the
Credential Service (running on the user’s phone), the mes-
sage string is inserted into the post application’s database
by the verify application.

5.4 Anonymous Post Android Application
We developed a mobile phone application on the Android

2.2 platform, which implements the Credential Service. The
Android app can be downloaded at http://trident.cs.

ucdavis.edu/app/MobiCredAndroid.apk.
The app has two Android activities corresponding to the

two main responsibilities of the Credential Service. First, it
includes an activity to run the registration protocol with the
AIP registration service application we developed. This ac-
tivity also downloads the necessary files containing the group
parameters and AIP public key described previously. Sec-
ond, an activity that runs the periodic k-times anonymous
authentication protocol. It retrieves the T and k parameters
from the above website, forms a valid rnym for the current
monitoring period then submits the message entered by a
user to the Verification Service via HTTP POST. Note that
instead of developing a separate example RP phone app,
we simply include the message post functionality into the



Credential Service in order to facilitate our benchmark ex-
periments.

5.5 Performance

Min Median Mean Max

Setup (GP) 1.122 23.549 57.266 586.902
Setup (AKP) 2.041 30.362 39.662 191.088

Register 3.541 4.459 4.490 8.654
Post 2.076 2.238 2.553 7.385

Table 1: Wall clock times (in seconds) to perform 100 tri-
als of the setup phase operations, registration protocol, and
message post operation.

We ran several benchmarks to measure the performance
of our implementation. The system that hosted our exper-
iments for the setup operations was a quad-core 2.67 GHz
Intel Xeon processor with 6GB of RAM. The system that
hosted our website was a standard VMWare Workstation
virtual machine hosted by the previous system and config-
ured with 1 2.67 GHz processor, 1GB of RAM and a bridged
network adapter. Both systems were connected to the Inter-
net via ethernet on a university network. The smartphone
that hosted our Android applications was a Motorola Droid
running Android 2.2.
Table 1 gives the wall-clock time in seconds (calculated

via the java.util.Date.getTime API call). For the setup
operations, GP refers to the time to generate (Γ, ρ, g) while
AKP refers to the time to generate the AIP’s keypair where
the public part is (n,R, S, Z).
For the register and post message operations, the time

given is measured from the user’s perspective and includes
all the operations on the mobile phone, network requests,
and all the operations on the server. More precisely, for the
registration protocol, the time is measured starting from the
first web request and ending after the credential has been
saved to a file on the device. Similarly, for posting a message,
the time is measured starting from the initial web request,
including the proof computations on the mobile phone, the
verification and database storage operations on the server,
then ending after the user has received a status code from
the server indicating a successfully posted message. Each
operation was timed for 100 repetitions and given in the
table are the min, median, mean and max times.

5.6 Discussion
Notice that the max execution time for GP is almost ten

minutes long. Moreover, the standard deviation for the GP
times is 107.104 while for the AKP times is 35.190. Compare
these to the register and post operations which are both
under one. The wide variation is due to the algorithms used
to generate the random numbers required in the protocols.
For example, the GP operation involves generating the

random generator g, and the algorithm for this is to simply
keep generating random numbers until a number satisfy-
ing the constraints is found i.e., the order is prime and lies
within a given interval. In addition, the AKP operation in-
volves generating the “safe RSA modulus” n in the public
key i.e., n is the product of two safe primes. This means
that n = pq where p = 2p′ + 1, q = 2q′ + 1 and p′, q′ are
prime numbers as well. Here, the algorithm is the same,
generate random numbers and loop until the constraints are

satisfied. Indeed, there are optimizations to speedup the GP
and AKP operations by taking advantage of multi-core pro-
cessors. However, these operations are only performed once
for the lifetime of the system hence we deemed the running
times from our experiments reasonable and did not explore
the optimizations further.

6. SECURITY ANALYSIS
The security of Opaak relies heavily on the security of CL-

signatures and the proofs of knowledge used. In this section,
we discuss the resistance of our approach to various attacks
with respect to our goals described in Section 2. Recall that
we are not concerned with network based attacks i.e., we are
concerned with misbehaving participants in the system.

6.1 Linking User Identities and Tracking

6.1.1 Identifying Different Users

Recall from Section 3 that an rnym is of the form rnym =
guk mod Γ where g = H(s)(Γ−1)/ρ and s is an arbitrary
string. Ideally, full anonymity means that given two dif-
ferent rnym, a relying party cannot determine whether it

belongs to the same user or not. As previously mentioned,
having a public base (g) has a privacy implication. How-
ever, in Opaak, two different rnym with the same input
to the hash function means that they must belong to two

different users. More concretely, consider users Alice and
Bob with master secret keys uka and ukb, respectively. If
they try to create their first accounts at a relying party
with domain name dom, then Alice would form rnyma =
guka mod Γ and Bob would form rnymb = gukb mod Γ where

g = H(dom||0)(Γ−1)/ρ.
Indeed, this is a slightly weakened definition of anonymity.

A consequence of this is that a relying party would be able
to count the number of unique users it has seen. We em-
phasize that the above example does not break our defi-
nition of linkability i.e., the relying party knows that two
users have created accounts but it cannot identify which
user. Moreover, if Alice chooses to create a second account
where g = H(dom||1)(Γ−1)/ρ, the relying party cannot tell
whether it is Alice, or Bob. Hence, even if relying parties
collude, the most information they can glean is limited to
comparing the number of unique users they have seen.

Hiding the value of grnym as some existing schemes have
done would require us to utilize ZKPK techniques [4, 31]
that can hamper performance significantly in practice. We
believe this tradeoff is reasonable in order to keep our pro-
tocols efficient on the mobile platform.

6.1.2 Offline Identity Providers

Our main concern with AIPs is that they attempt to
track the user’s online transactions with different relying
parties. Unlike existing SSO frameworks, the user’s transac-
tions need not be brokered through the AIP in Opaak. This
means that the AIP learns nothing about the transaction.
Furthermore, the AIP can be offline and is never involved
during transactions between users and relying parties.

During registration, the AIP can learn some identifying
information from users because they must present some form
of scarce resource such as a mobile phone number. However,
the AIP is limited to knowing that it has certified such a
phone number and nothing else.



6.1.3 Optional Friendly Names

If a user does not associate a FriendlyName with an ac-
count, then that account is an anonymous account. How-
ever, if a user associates the same FriendlyName to her ac-
counts at different relying parties, then these accounts can
be linked. Similarly, a user might willingly reveal her real
identity to the relying party e.g., posting a message con-
taining their real name, or using the same profile picture
on different websites. To benefit from the Opaak’s unlink-
able accounts, a user must choose a different FriendlyName

at an alcohol self-help group than her professional LinkedIn
account. A user should also refrain from sending any data
that may expose their identity to the alcohol self-help group
website.

6.1.4 Collusion

Relying parties, users and AIPs might collude to attempt
to de-anonymize an rnym they have seen, or link a user’s
proofs of possession of CL-signatures, with the goal of track-
ing the relying parties it has visited. Provided that the reg-
istration protocol was carried out honestly between the user
and an AIP, then AIPs cannot do this. This is also true
even in the case that an AIP is also a relying party. This is
because of the property of CL-signatures that two proofs of
possessions cannot be linked with each other.
At most, colluding participants could compare the number

of unique rnym a relying party has seen. It is not possible for
two relying parties to link the users they have seen hence,
colluding participants could not even count the total number
of unique users in the system.

6.2 User Impersonation
One of our concerns is that users might try impersonate

other users in the system. They might do this by forging a
CL-signature or by taking over another user’s mobile phone.
Provided that the registration protocol was carried out hon-
estly between the user and an AIP, then this is not possible.
CL-signatures are resistant to forgery even if a user colludes
with other participants in the system. On the other hand, a
malicious user could simply take over another user’s mobile
phone to either use it directly or perhaps copy the stored
master secret. We describe ways to mitigate device theft in
Section 4.2.

6.3 Spam and Sybil Attacks
As it enables user anonymity online, Opaak’s main con-

cern come in the form of spam and Sybil attacks. Users could
attempt to spam service requests to relying parties. They
might also attempt to register to an AIP multiple times and
obtain multiple credentials.
Provided that the AIP requires the user to demonstrate

possession of a scarce resource, then the protocols outlined in
Section 3 prevent a user from creating an uncontrolled num-
ber of accounts with a relying party or spamming requests
to a relying party by using multiple credentials. Further-
more, the periodic k-times anonymous authentication pro-
tocol which makes sure that a user can only create k valid
rnym for a specified time period per credential they possess.

7. RELATED WORK
A number of digital identity management (DIM) frame-

works have been proposed with the most notable ones being
OpenID [6] and Microsoft’s CardSpace [20]. OpenID and

CardSpace focus on allowing users to consolidate and man-
age their digital identities and don’t offer users anonymity
from relying parties. In contrast, Opaak’s main goal is to
provide users anonymity from relying parties (as well as the
identity providers) while simultaneously preventing spam
and Sybil attacks. On the other hand, a suite of crypto-
graphic techniques called U-Prove technology [2] developed
by Stefan Brands has been integrated into CardSpace to of-
fer similar capabilities as PRIME. Presumably, Opaak can
also use U-Prove to achieve its goals, however we opt to focus
on Idemix which provides better support and documenta-
tion. Similarly, PseudoID [21] augments the OpenID frame-
work with blind signatures that allow users to anonymously
authenticate with identity providers. The addition of a blind
signature service (BSS) gives PseudoID users transactional
privacy. However, identity providers can still log the rely-
ing parties users are visiting since users (although it doesn’t
know which user) are still redirected by relying parties to
identity providers. Opaak eliminates this communication
flow completely by using anonymous credentials and the AIP
is never involved when a user authenticates with a relying
party. Furthermore, Opaak enables relying parties to rate
limit users while PseudoID must completely rely on the BSS
to prevent Sybil attacks.

There are DIM frameworks that consider user privacy
as a design goal and these include Privacy and Identity
Management for Europe (PRIME) [16] (now PrimeLife [7]),
VeryIDX [30], and PriMan [38] PRIME is an ongoing effort
involving a consortium of companies and academia aiming
to develop a comprehensive framework for privacy for the
web and its applications. Indeed, the Identity Mixer cryp-
tographic library [26] was developed as part of the PRIME
project and is utilized by the PRIME core to enable anony-
mous authentication in applications. While both Opaak and
PRIME utilize anonymous credentials, the PRIME architec-
ture [10] has much more components as a result of its wide
scope of design goals. Opaak has a more lightweight archi-
tecture as we focus on smartphone deployment and a well-
defined set of target applications. In addition, our archi-
tecture allows developers to use our techniques more trans-
parently. PRIME also focuses on managing the identity at-
tributes (e.g., age, sex, marital status) of users and allowing
them to selectively disclose these attributes to relying par-
ties [11]. While Opaak could easily integrate such selective
disclosure features as well, it opts to focus on giving relying
parties the ability to control spam and Sybil attacks as these
can be done with efficient protocols. Zero knowledge proofs
of such identity attributes (e.g., proving an age value lies
in a given interval like “≥ 18”) can include techniques that
do not scale well [4, 31]. VeryIDX also places an emphasis
on proving identity attributes (e.g., credit card number, so-
cial security number) to relying parties. They do this with
their “aggregate zero knowledge proof” protocol based on
an aggregate signature scheme by Boneh et. al.. Similar to
Opaak, they also realize the increasing ubiquity of mobile
phones and store the secrets on the phone itself. As a re-
sult, they utilize a combination of cryptographic techniques
(secret sharing) and secure hardware to protect the secrets
on the phone. In contrast, Opaak focuses on controlling how
third party applications access the credentials and leverage
the isolation mechanisms and permission framework avail-
able with a modern smartphone OS such as Android. Pri-
Man claims to be a user-centric identity middleware frame-



work. PriMan takes into consideration third party applica-
tion developers in their architecture design which reconciles
different approaches to digital credentials and allows devel-
opers to easily switch from one approach to another.
Several applications based on anonymous credentials have

also been described in literature. Blanton designed a sys-
tem that adds anonymous access to online subscription ser-
vices [14]. During the subscribe phase, users and service
providers agree on a subscription type and an expiration
date on which the service provider issues a CL-signature.
Subsequently, users access the service anonymously until the
expiration date by proving possession of the CL-signature.
To prevent users from abusing the system, the access phase
requires the user to obtain a new signature on a fresh ac-
cess token where the old access token is stored by the ser-
vice provider so that it can check whether tokens are being
reused. Similar to Opaak, the anonymous ePoll system de-
veloped by Verhaeghe et. al. utilize the Idemix library on an
Android phone [37]. Anonymous voting applications can be
supported by Opaak as well however, their system goes fur-
ther and provides features such as using verifiable encryption
to provide voters with receipts that voters can use to prove
participation. Furthermore, they conduct an evaluation and
show how range proofs can affect performance negatively
and that they do not scale well. This is precisely the reason
why Opaak makes the tradeoff for privacy as discussed in
Section 6. While Opaak and the ePoll system above show
that full-fledged anonymous credentials can be utilized on
commodity smartphones, Bichsel et. al. show that it can be
done on severely resource constrained standard Java smart
cards [13].
A number of cryptographic schemes have been proposed

that have similar goals to rate limiting pseudonyms. The
original k-times anonymous authentication scheme devel-
oped by Teranishi et. al. uses authentication tokens formed
very similarly as rate limiting pseudonyms. They allow users
to form up to k valid tokens which can allows them to au-
thenticate with a relying party. It is based on group sig-
natures instead of CL-signatures and could potentially be
used to implement our protocols. More recently, a periodic
n-times authentication scheme proposed by Camenisch et.
al. [15] allows users to show up to n tokens anonymously
and unlinkably to a verifier. Exceeding n means a user gets
de-anonymized i.e., the verifier can compute the user’s pub-
lic key from (reused) tokens. In contrast, our protocols do
not have such harsh punishment for misbehavior and only
detects it so that the user’s request can be denied. Both
these schemes could potentially be modified to fit our sce-
nario however, they both require complex ZKPK (e.g., prov-
ing a number lies in a given interval) that we opt to avoid
in our scheme.
Anonymous blacklisting schemes are protocols that allow

relying parties to maintain a blacklist of misbehaving users
while preserving user privacy. There are the BLAC family of
protocols [34–36] and the Nymble family of protocols [25,29].
In the BLAC protocols, users authenticate to relying par-
ties by downloading the relying party’s current blacklist and
creating a ZKPK that they are not in the blacklist. Rely-
ing parties maintain their own blacklist containing “tickets”
which are transcripts of previous authentications from users.
Tickets are formed such that during authentication, users
prove that they could not have created any of the tickets
currently on the blacklist. In the Nymble protocols, users

form “nymbles” based on their credentials and relying par-
ties file complaints on a nymble to a Nymble Manager which
can then include all other nymbles that a user may form on
the blacklist. Since our protocols were tailored with spe-
cific applications in mind, they are more efficient than these
blacklisting schemes. Moreover, it is unclear how they can
be adapted for a periodic k times anonymous authentication
scheme while maintaining the same security guarantees.

8. CONCLUSION
In this paper, we proposed Opaak, a framework for anony-

mous authentication that enables users to participate in on-
line services anonymously while making sure that relying
parties have the ability to prevent spam and Sybil attacks.
It targets two kinds of applications, an anonymous single
sign-on application, and anonymous message board types of
applications. Opaak provides efficient protocols for these
applications based on anonymous credentials. In addition,
we designed a proxy based architecture that allows Opaak
to be integrated easily with existing mobile and web applica-
tions. Our architecture also allows applications developers
who may not be well-versed in cryptography to utilize our
protocols transparently. We implemented a prototype on
an Android phone, and demonstrated that it can perform
anonymous authentications in a matter of seconds. With
our work, we hope to encourage application developers to
adopt systems like Opaak and motivate the deployment of
anonymous credential based systems in the current Internet
landscape.
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