
Delegating Capabilities in Predicate Encryption Systems

Elaine Shi∗

rshi@cmu.edu

Brent Waters†

bwaters@csl.sri.com

Abstract

In predicate encryption systems, given a capability, one can evaluate one or more predicates on
the encrypted data, while all other information about the plaintext remains hidden. We consider
the first such systems to permit delegation of capabilities. In a system that supports delegation, a
user Alice who has a capability can delegate to Bob a more restrictive capability, which allows him
to learn less about encrypted data than she did.

We formally define delegation in predicate encryption systems, and propose a new security
definition for delegation. In addition, we present an efficient construction supporting conjunctive
queries. The security of our construction can be reduced to the general 3-party Bilinear Diffie-
Hellman assumption, and the Bilinear Decisional Diffie-Hellman assumption in composite-order
bilinear groups.

1 Introduction

In traditional public key encryption a user creates a public and private key pair where the private key is
used to decrypt all messages encrypted under that public key. Traditional public key encryption allows
“all-or-nothing” access to the encrypted data: the private key owner can decrypt everything, and any
party without the private key learns nothing about the data encrypted. Recently, cryptographers have
proposed a new notion of encryption called predicate encryption [5, 10, 9, 22, 1, 7, 18] (also referred
to as searching on encrypted data). In predicate encryption, the private key owner can compute a
capability that allows one to evaluate predicates on the encrypted data. Capabilities can be regarded
as partial decryption keys that release partial information about the plaintext encrypted in a controlled
manner.

For example, imagine a network audit log collection effort with different Internet Service Providers
(ISPs) contributing network audit logs to an untrusted repository. The audit logs will later be used
to study network intrusions and worms. Because of privacy concerns, ISPs encrypt their audit logs
before submitting them to the repository, and only a trusted authority has the private key to search
the logs. Now suppose there has been an outbreak of a new network worm. An auditor (e.g., a
research institute) has been asked to study the behavior of the worm and propose countermeasures.
The auditor can now request the authority for a capability that allows the decryption of suspicious log
entries, e.g., flows satisfying the following characteristic: (port ∈ [p1, p2]) ∧ (time ∈ last month).
Meanwhile, the privacy of all other log entries is preserved.

In predicate encryption, it is often important for a user holding a capability (or a set of capabilities)
to generate another capability that is more restrictive than those she currently holds. For example,
Carnegie Mellon University can have the capability to decrypt all log entries satisfying characteristics
of the SQL Slammer worm. The university may ask a specific group of researchers to study the SQL

∗Army Research Office under the CyberTA Grant No. W911NF-06-1-0316.
†Supported by NSF CNS-0749931, CNS-0524252, CNS-0716199; the U.S. Army Research Office under the CyberTA

Grant No. W911NF-06-1-0316; and the U.S. Department of Homeland Security under Grant Award Number 2006-CS-

001-000001.

1

Slammer worm originating from an IP address range. To do this, the head of the university can
create a more restrictive capability that can decrypt all log entries having the worm characteristic,
and originating from this IP range. We say that a predicate encryption system allows for delegation
if a user can create capabilities that are more restrictive than the capability she currently owns and if
she can do this operation autonomously, that is, without interacting with an authority.

In this paper, we study delegation in predicate encryption systems. We propose new security def-
initions of delegation, and a delegatable predicate encryption scheme supporting conjunctive queries.
We first give an overview of related work, and then explain our approach and contributions.

1.1 Related work

From traditional public-key encryption to predicate encryption. While traditional public-key encryption
is sufficient for applications where there is a one-to-one association between a particular user and a
public key, several applications will demand finer-grained and more expressive decryption capabilities.
Shamir [21] provided the first vision for finer-grained encryption systems by introducing the concept
of Identity-Based Encryption (IBE). In an IBE system, a party encrypts a message under a particular
public key and associates the ciphertext with a given string or “identity”. A user can obtain a private
key (that is derived from a master secret key) for a particular identity and can use it to decrypt any
ciphertext that was encrypted under his identity.

Since the realization of the first Identity-Based Encryption schemes by Boneh and Franklin [6] and
Cocks [14], a number of new crypto-systems have provided increasing functionality and expressiveness
of decryption capabilities. In Attribute-Based Encryption systems [20, 16, 2, 19, 13] a user can receive
a private capability that represents complex access control policies over the attributes of an encrypted
record. These systems permit much more expressive access control over encrypted data. However,
access to the data itself is still inherently all-or-nothing. The decryptor either will be able to decrypt
the data and learn everything or will not and thus learn nothing.

We are interested in what we call predicate encryption systems, where the capability performs a
function (or predicate) over the encrypted data itself and the evaluator learns only the output of this
function. The first examples of this were called keyword search (or anonymous IBE) [5, 10, 9, 22, 1,
7, 18] systems. We henceforth refer to such encryption systems as predicate encryption. Predicate
encryption represents a significant breakthrough in the sense that access to the encrypted data is no
longer “all-or-nothing”; a user with a predicate capability is able to learn partial information about
encrypted data.

Delegation. The concept of delegation was first introduced in this context by Horwitz and Lynn [17] in
the form of Hierarchical Identity-Based Encryption (HIBE) [17, 4, 15]. In an HIBE scheme both private
keys and ciphertexts are associated with ordered lists of identities. A user with a given hierarchical
identity can decrypt any ciphertext where his identity is a prefix of the ciphertext’s identity; moreover,
a user can delegate by creating any other private key for which his identity is a prefix. For example,
a user in charge of the UC Davis domain with a private key for edu:ucdavis can delegate to the
computer science department a private key for edu:ucdavis.cs. Since the introduction of HIBE,
the principle of delegation has been applied to other access control systems such as attribute-based
encryption systems [16].

1.2 Delegation in predicate encryption

In this paper, we examine the problem of delegating capabilities in the more general context of predicate
encryption systems [23, 1, 5, 10, 9, 22, 18]. Apart from the aforementioned network audit log example,
delegation in predicate encryption can also be useful in other scenarios. For example, Alice has the
capability to decrypt all email labeled with “To:alice@yahoo.com”. If Alice plans to go on vacation
over the next two weeks she might want to delegate to her assistant the ability to read all her incoming
email messages, but only over this period. To do this, Alice can create a more restrictive capability that

2

decrypts all such messages sent during the next two weeks. In another example, Alice’s email gateway
has the capability to decrypt certain labels of the email and make forwarding decisions accordingly.
Emails labeled as “urgent” by her boss should be sent to her pager; emails from her family should
be forwarded to her home computer, and so on. The email gateway might want to install similar
filtering capabilities on an upstream gateway for cost-saving reasons. However, this gateway might be
a less-trusted device, and Alice may only wish to have the upstream gateway classify email as “urgent”
and “nonurgent” and give preference in forwarding the urgent email.

Delegation in predicate encryption poses a unique set of challenges and is typically harder to
realize than delegation in Identity-Based Encryption (IBE) or Attribute-Based Encryption because
in an IBE system, a user can access an encrypted message if and only if his private key identity
matches the ciphertext identity, but the ciphertext identity itself is not hidden. In contrast, predicate
encryption systems such as anonymous IBE hide the “identity” of the ciphertext itself. In fact, one
can equivalently regard the “identity” as part of the data to be encrypted, and the query predicates
are directly evaluated over the encrypted data itself. As a result, realizing delegation is much more
challenging. For instance, in anonymous HIBE systems one must be careful that the delegation
components themselves cannot be used to answer queries.

Definitional Issues One major difficulty in building delegation into encryption systems is that previous
definitions for security of HIBE are incomplete. In the existing definitions of HIBE security, the
attacker plays a game where he receives all his private key queries directly from the HIBE authority;
however, this does not accurately model an adversary’s view in a real system. In a real system an
adversary might get the private key edu:ucdavis.cs directly from an authority or might choose to get
it from a user with the key edu:ucdavis. In general, private keys received directly from the authority
and delegated private keys may have different distribution or forms. For example, in the Gentry and
Silverberg [15] and Boneh and Boyen HIBE [3] schemes if a HIBE private key of depth ℓ is received
directly from an authority, the authority will create ℓ newly random elements of Z

∗
p in creating the

key; however, if the key is generated by another user, only one new degree of randomness will be added
and the rest will be in common with the previous key. As a result, in the security game, we should not
assume that delegated keys have the same distribution as keys directly computed by the authority.

Our Approach. We first set out to create a general framework and definitions for delegation in pred-
icate encryption systems. To do this we create a general definition that accounts for how predicate
capabilities are created. In particular, our definition allows for the adversary to make queries both for
capabilities that are created by an authority and for capabilities delegated by users. The adversary
may then ask for some subset of these capabilities to be revealed to him.

Using our new definition we set out to realize delegation in an expressive predicate encryption
system by extending the Hidden Vector Encryption (HVE) system of Boneh and Waters [9] to allow
for delegation. To realize security under our new definition we apply two new techniques.

First, we need to make sure that the additional delegation components do not compromise the
security of our scheme. We enforce this by “tying” the delegation components of a key to the restric-
tions of the original key itself. Second, we have the challenge that in the previous HVE techniques
of Boneh and Waters [9], the simulator typically creates keys that are “completely random” in the
sense that they have the same distribution as those coming directly from the authority; however, our
security definition demands that the keys reflect the distribution of delegation steps specified by the
adversary. To overcome this we modify the basic scheme such that the distribution of the keys is
hidden from a computationally bounded adversary. We show that no adversary can tell whether any
key was delegated as he specified or came directly from the authority. After applying this hybrid step
we can proceed to use a simulation that is similar to the previous ones. We believe that our approach
is novel in that it is the first instance of a computational game over the structure of private keys in
a capability-oriented crypto-system.

3

Finally, we provide a more efficient realization of Anonymous HIBE, which can be seen as a special
case of our delegatable HVE scheme. Our Anonymous HIBE scheme has the property that private
keys are O(D) in size for a system that allows hierarchies of depth D. Our private key space efficiency
can be viewed as a direct result of our corrected definition as the previous scheme of Boyen and Waters
required O(D2) to make all delegated keys have the same distribution as those that came directly from
the authority.

2 Definitions

We introduce the notion of delegation in predicate encryption systems and provide a formal definition
of security.

In a predicate encryption system, some user, Alice, creates a public key and a corresponding master
key. Using her master key, Alice can compute and hand out a token to Bob, such that Bob is able to
evaluate some function1, f , on the plaintext that has been encrypted. Meanwhile, Bob cannot learn
any more information about the plaintext, apart from the output of the function f .

In this paper, we consider the role of delegation in predicate encryption systems. Suppose Alice (the
master key owner) has given Bob tokens to evaluate a set of functions f1, f2, . . . , fm over ciphertexts.
Now Bob wishes to delegate to Charles the ability to evaluate the functions {f1 + f2, f3, f4} over the
ciphertext. Charles should not be able to learn more information about the plaintext apart from the
output of the functions {f1 +f2, f3, f4}. For example, although Charles can evaluate f1 +f2, he should
not be able to learn f1 or f2 separately. In general, Bob may be interested in delegating any set of
functions that is more restrictive than what he is able to evaluate with his tokens. In general, a user
who has a delegated capability can in turn create an even more restricted capability. For example,
after obtaining a token from Bob for functions {f1 + f2, f3, f4}, Charles may now decide to delegate
to his friend David a token to evaluate f3 · f4.

2.1 Definition

We now formally define delegation in predicate encryption systems that captures the above notion.
Let X = (x1, x2, . . . , xℓ) ∈ {0, 1}

ℓ denote a plaintext. Without loss of generality, assume that we
would like to evaluate from the ciphertext boolean functions (a.k.a. predicates) on X. Functions that
output multiple bits can be regarded as concatenation of boolean functions. Let F denote the set of
all boolean functions from {0, 1}ℓ to {0, 1}, i.e., F := {f

∣∣ f : {0, 1}ℓ → {0, 1}}.
We define a token as a capability that allows one to evaluate from the ciphertext a set of functions

on X. Tokens will be associated with a set G = {g1, g2, . . . , gm} ⊆ F that can compute a subset of all
available functions. We remark that a token might be represented much more succintly than |G|. For
instance, if one had the capability to learn each individual bit of X one could have a small token, but
still compute all 22ℓ

predicate functions on the input.
A delegatable Predicate Encryption (DPE) scheme consists of the following (possibly randomized)

algorithms.

Setup(1λ) The Setup algorithm takes as input a security parameter 1λ and outputs a public key PK

and a master secret key MSK.

Encrypt(PK,X) The Encrypt algorithm takes as input a public key PK and a plaintext X = (x1, x2, . . . , xℓ)
∈ {0, 1}ℓ and outputs a ciphertext CT.

GenToken(PK,MSK,G) The GenToken algorithm takes as input a public key PK, master secret key
MSK, and a set of boolean functions G ⊆ F . It outputs a token for evaluating the set of functions
G from a ciphertext.

1Although we focus on functions that are predicates in our solutions, we use the more general term of functions in

this discussion and our formal definitions.

4

Query(PK,TKG ,CT, f) The Query algorithm takes as input a public key PK, a token TKG for the
function family G, a function f ∈ G, and a ciphertext CT. If CT is an encryption of the plaintext
X, then the algorithm outputs f(X).

Delegate(PK,TKG ,G′) The Delegate algorithm takes as input a public key PK, a token for the function
family G ⊆ F , and G′ ⊆ G. It computes a token for evaluating the function family G′ on a
ciphertext.

Remark 1. We note that the above definition captures delegation in predicate encryption systems in
the broadest sense. In a predicate encryption system, we would like to maximize the expressiveness
of delegation; however, one should not be able to delegate beyond what she can learn with her own
tokens. Otherwise, the security of predicate encryption would be broken.

Since we care about being able to perform expressive delegations, we can judge a system by its
expressiveness, e.g., what types of functions one can evaluate over the ciphertext, and what types of
delegations one can perform. Our vision is to design a predicate encryption system that supports a
rich set of queries and delegations. As an initial step, we restrict ourselves to some special classes of
functions. At the time of writing this paper, the most expressive predicate encryption system (without
delegation) we know of supports conjunctive queries [9]; we focus our efforts on permitting delegation
in such systems.

More recently, Katz, Sahai, and Waters proposed a novel predicate encryption system supporting
inner product queries [18] and realized a more expressive system. An interesting open direction is to
figure out what types of delegation one might realize in their system.

2.2 Security

We now define the security for delegation in predicate encryption systems. We describe a query
security game between a challenger and an adversary. This game formally captures the notion that
the tokens reveal no unintended information about the plaintext. The adversary asks the challenger
for a number of tokens. For each queried token, the adversary gets to specify its path of derivation:
whether the token is directly generated by the root authority, or delegated from another token. If
the token is delegated, the adversary also gets to specify from which token it is delegated. The game
proceeds as follows:

Setup. The challenger runs the Setup algorithm and gives the adversary the public key PK.

Query 1. The adversary adaptively makes a polynomial number of queries of the following types:

• Create token. The adversary asks the challenger to create a token for a set of functions
G ⊆ F . The challenger creates a token for G without giving it to the adversary.

• Create delegated token. The adversary specifies a token for function family G that has
already been created, and asks the challenger to perform a delegation operation to create
a child token for G′ ⊆ G. The challenger computes the child token without releasing it to
the adversary.

• Reveal token. The adversary asks the challenger to reveal an already-created token for
function family G.

Note that when token creation requests are made, the adversary does not automatically see the
created token. The adversary sees a token only when it makes a reveal token query.

Challenge. The adversary outputs two strings X∗
0 ,X∗

1 ∈ {0, 1}
ℓ subject to the following constraint:

For any token revealed to the adversary in the Query 1 stage, let G denote the function family
corresponding to this token. For all f ∈ G, f(X∗

0) = f(X∗
1).

5

Next, the challenger flips a random coin b and encrypts X∗
b . It returns the ciphertext to the

adversary.

Query 2. Repeat the Query 1 stage. All tokens revealed in this stage must satisfy the same
condition as above.

Guess. The adversary outputs a guess b′ of b. The advantage of an adversary A in the above game
is defined to be AdvA = |Pr[b = b′]− 1/2|.

Definition 2.1. We say that a delegatable predicate encryption system is secure if for all polynomial-
time adversaries A attacking the system, its advantage AdvA is a negligible function of λ.

2.2.1 Selective security We also define a weaker security notion called selective security. In
the selective security game, instead of submitting two strings X∗

0 ,X∗
1 in the Challenge stage, the

adversary first commits to two strings at the beginning of the security game. The rest of the security
game proceeds exactly as before. The selective security model has been used earlier in the literature [11,
12, 3, 9, 10, 22].

We say that a delegatable predicate encryption system is selectively secure if all polynomial time
adversaries A have negligible advantage in the selective security game.

Remark 2. We note that our security definition is complete in the sense that in the query phase, the
adversary gets to specify, for each queried token, its path of derivation: whether the token is generated
by the root authority, or from whom the token has been delegated. In prior work on delegation in
identity-based encryption systems (e.g., Hierarchical Identity-Based Encryption (HIBE) [4], Anony-
mous Hierarchical Identity-Based Encryption (AHIBE) [10]), the security game was under-specified.
In these definitions, the adversary did not get to specify from whom each queried token is delegated.

One way to deal with this is to create systems where all tokens are generated from the same
probability distribution. For instance, the AHIBE [10] work uses this approach. While this allows us
to prove the security of these systems, it can be an overkill. Under our security definition, the delegated
token need not be picked from the same probability distribution as the nondelegated tokens. In fact,
we show that the ability to capture such nuances in our security definition allows us to construct a
simpler AHIBE scheme with smaller private key size.

2.3 A simple example

To help understand the above definition, we give a simple example similar to that in the BW06
paper [9]. As shown by Figure 1, the point X encrypted takes on integer values between 0 and T .
Given a, b ∈ [0, T], let fa,b denote the function that decides whether X ∈ [a, b]:

fa,b(X) =

{
1 X ∈ [a, b]

0 o.w.

In Figure 1, we mark three disjoint segments [a1, a2], [a3, a4], [a5, a6] and four points x, y, z, u. Alice has
a token for functions {fa1,a2

, fa3,a4
, fa5,a6

}. This allows her to evaluate the following three predicates:
whether a1 ≤ X ≤ a2, a3 ≤ X ≤ a4, and a5 ≤ X ≤ a6. Alice can now distinguish between ciphertexts
Encrypt(PK, x) and Encrypt(PK, y), but she cannot distinguish between ciphertexts Encrypt(PK, y)
and Encrypt(PK, z).

Alice performs a delegation and computes a child token for the function g(X) = fa1,a2
(X) ∨

fa3,a4
(X), and Bob receives this delegated token from Alice. Bob can decide whether (a1 ≤ X ≤

a2) ∨ (a3 ≤ X ≤ a4); this is a subset of information allowed by Alice’s token. Given this new
token, Bob can decide whether X falls inside these two ranges, but he cannot decide between the
cases whether X ∈ [a1, a2] or X ∈ [a3, a4]. For example, Bob can distinguish between the ciphertexts
Encrypt(PK, x) and Encrypt(PK, u), but he cannot distinguish between the ciphertexts Encrypt(PK, x)
and Encrypt(PK, y).

6

u

zyx

T0 a1 a2 a3 a4 a5 a6

Figure 1: A simple example of predicate encryption similar to the one described in BW06 [9].

3 Delegatable Hidden Vector Encryption (dHVE)

We propose a primitive called delegatable hidden vector encryption (dHVE), where we add delegation
to the HVE construction proposed in BW06 [9]. This is an interesting special case to the general
definition given in Section 2.1, and represents an initial step toward our bigger vision of enabling
expressive queries and delegations in predicate encryption systems.

3.1 Delegatable HVE overview (dHVE)

In our dHVE system, a plaintext consists of multiple “fields”. For example, a plaintext can be the
tuple (IP, port, time, length). A token corresponds to a conjunction of a subset of these fields:
we can fix a field to a specific value, make a field “delegatable”, or choose not to include a field in a
query. For example, the query (IP = ?) ∧ (port = 80) ∧ (time = 02/10/08) fixes the values of the
port and time fields, and makes the IP field delegatable. The length field is not included in the
query. A party in possession of this token can fill in any appropriate value for the delegatable field IP;
however, she cannot change the values of a fixed field such as port or delete them from the query, nor
can she add in the missing field length to the query. We now give formal definitions for the above
notions.

Let Σ denote a finite alphabet and let ?,⊥ denote two special symbols not in Σ. Define Σ?,⊥ :=
Σ ∪ {?,⊥}. The symbol ? denotes a delegatable field, i.e., a field where one is allowed to fill in an
arbitrary value and perform delegation. The symbol ⊥ denotes a “don’t care” field, i.e., a field not
involved in some query. Typically, if a query predicate does not concern a specific field, we call this
field a “don’t care” field. In the aforementioned example, (IP = ?)∧(port = 80)∧(time = 02/10/08),
the IP field is delegatable, length is “don’t care”, and the remaining fields are fixed.

Plaintext Space. In dHVE, our plaintext is composed of a message M ∈ {0, 1}∗ and ℓ fields, denoted
by X = (x1, x2, . . . , xℓ) ∈ Σℓ. Capabilities will be evaluated over X, and the M component is an extra
message that will be divulged in case the predicate evaluates to true.

The Encrypt algorithm takes as input a public key PK, a pair (X,M) ∈ {0, 1}∗ × Σℓ, and outputs
a ciphertext CT.

Tokens. In dHVE, a token allows one to evaluate a special class of boolean functions on the fields
X ∈ Σℓ. We use a vector σ = (σ1, σ2, . . . , σℓ) ∈ (Σ?,⊥)ℓ to specify a set of functions being queried.
Given σ, let W(σ) denote the indices of all delegatable fields, let D(σ) denote the indices of all “don’t
care” fields, and let S(σ) denote the indices of the remaining fixed fields. In the following, we use the
notation [ℓ] to denote the set {1, 2, . . . , ℓ}.

W(σ) := {i
∣∣ σi = ?}, D(σ) := {i

∣∣ σi = ⊥}

S(σ) := {i
∣∣ σi ∈ Σ} = [ℓ]\ (W(σ) ∪ D(σ))

Let σ = (σ1, σ2, . . . , σℓ) ∈ (Σ?,⊥)ℓ; σ specifies the following function family Cσ on the point X =
(x1, . . . , xℓ) encrypted:

Cσ :=





(
∧

i∈W ′

(xi = ai)

)
∧




∧

j∈S(σ)

(xj = σj)


 ∣∣ W ′ ⊆ W(σ), ∀i ∈W ′, ai ∈ Σ



 (1)

7

In other words, given a token for σ, the family Cσ denotes the set of functions we can evaluate from
a ciphertext. For the delegatable fields, we can fill in any appropriate value, but we cannot change or
delete any of the fixed fields or add a “don’t care” field to the query. If any function in Cσ evaluates
to 1, one would also be able to decrypt the payload message M.

Remark 3. The family Cσ is a set of conjunctive equality tests, where we can fill in every delegatable
field in σ with a value in Σ or “don’t care”. In particular, we fill in fields in W ′ with appropriate
values in σ, and for the remaining delegatable fields W(σ) −W ′, we fill them with “don’t care”. If σ
has no delegatable field, then the set Cσ contains a single function. This is exactly the case considered
by the original HVE construction, where each token allows one to evaluate a single function from a
ciphertext.

Delegation. In dHVE, Alice, who has a token for σ, can delegate to Bob a subset of the functions she
can evaluate: 1) Alice can fill in delegatable fields (i.e., W(σ)) with a value in Σ or with the “don’t
care” symbol ⊥; 2) Alice can also leave a delegatable field unchanged (with the ? symbol). In this
case, Bob will be able to perform further delegation on that field.

Definition 3.1. Let σ = (σ1, σ2, . . . , σℓ), σ
′ = (σ′

1, σ
′
2, . . . , σ

′
ℓ) ∈ Σℓ

?,⊥. We say that σ′ ≺ σ, if for all
i ∈ S(σ) ∪ D(σ), σ′

i = σi.

Note that σ′ ≺ σ means that from TKσ we can perform a delegation operation and compute TKσ′ .
In addition, if σ′ ≺ σ, then Cσ′ ⊆ Cσ, i.e., TKσ′ allows one to evaluate a subset of the functions allowed
by TKσ.

In summary, we introduce delegatable fields to the original HVE construction. We use the notation
σ ∈ Σℓ

?,⊥ to specify a function family. Given TKσ, one can perform a set of conjunctive equality tests
(defined by Equation (1)) from the ciphertext. One may also fill in the delegatable fields in σ with
any value in Σ ∪ {⊥} and compute a child token for the resulting vector. The child token allows one
to evaluate a subset of the functions allowed by the parent token.

Example. The trusted authority T issues to A a token for σA = (I1,I2, ?, ?,⊥,⊥, . . . ,⊥). This token
allows A to evaluate the following functions from the ciphertext:

• (x1 = I1) ∧ (x2 = I2)

• ∀I3 ∈ Σ : (x1 = I1) ∧ (x2 = I2) ∧ (x3 = I3)

• ∀I4 ∈ Σ : (x1 = I1) ∧ (x2 = I2) ∧ (x4 = I4)

• ∀I3, I4 ∈ Σ : (x1 = I1) ∧ (x2 = I2) ∧ (x3 = I3) ∧ (x4 = I4)

Later, A delegates to B the token σB = (I1,I2,I3, ?,⊥,⊥, . . . ,⊥), where I3 ∈ Σ. Note that this
allows B to evaluate the following functions:

• (x1 = I1) ∧ (x2 = I2) ∧ (x3 = I3)

• ∀I4 ∈ Σ : (x1 = I1) ∧ (x2 = I2) ∧ (x3 = I3) ∧ (x4 = I4)

Clearly, a token for σB releases a subset of information allowed by σA. Meanwhile, B is able to
further delegate on the x4 field.

3.2 dHVE definition

We now give a formal definition of dHVE.

Setup(1λ). The Setup algorithm takes as input a security parameter 1λ and outputs a public key PK

and a master secret key MSK.

Encrypt(PK,X,M). The Encrypt algorithm takes as input a public key PK and a pair (X,M) ∈
Σℓ × {0, 1}∗, and outputs a ciphertext CT.

8

GenToken(PK,MSK, σ). The GenToken algorithm takes as input a public key PK, a master secret key
MSK, and a vector σ ∈ (Σ?,⊥)ℓ. It outputs a token for evaluating the set of conjunctive queries
Cσ from a ciphertext.

Delegate(PK,TKσ, σ′). The Delegate algorithm takes as input a public key PK, a token TKσ for the
vector σ, and another vector σ′ ≺ σ. It outputs a delegated token TKσ′ for the new vector σ′.

Query(PK,TKσ,CT, σ′). The Query algorithm takes as input a public key PK, a token TKσ for the
vector σ, a ciphertext CT, and a new vector σ′ satisfying the following conditions: (1) σ′ ≺ σ;
(2) σ′ does not contain delegatable fields, that is, such a σ′ specifies a single conjunctive query
(denoted fσ′) over the point X encrypted. The algorithm outputs fσ′(X); if fσ′(X) = 1, it also
outputs the message M.

Remark 4. In comparison to the general definition given in Section 2, in dHVE, we add a payload
message M ∈ {0, 1}∗ to the plaintext. Meanwhile, the conjunctive queries in dHVE are functions on
the attributes X ∈ Σℓ, but not the payload M. In addition, if a query matches a point X encrypted,
one can successfully decrypt the payload message using the corresponding token. It is not hard to show
that the above formalization for dHVE is captured by the general definition given in Section 2: We
can regard (M,X) as an entire bit string, and decrypting the payload M can be regarded as evaluating
a concatenation of bits from the bit string (M,X). We choose to define dHVE with a payload message
to be consistent with the HVE definition in BW06 [9].

Selective security of dHVE. We will prove the selective security of our dHVE construction. We give
the formal selective security definition below. The full security definition for dHVE can be found in
Appendix D.

• Init. The adversary commits to two strings X∗
0 ,X∗

1 ∈ Σℓ.

• Setup. The challenger runs the Setup algorithm and gives the adversary the public key PK.

• Query 1. The adversary adaptively makes a polynomial number of “create token”, “create del-
egated token”, or “reveal token” queries. The queries must satisfy the following constraint: For
any token σ revealed to the adversary, let Cσ denote the set of conjunctive queries corresponding
to this token.

∀ TKσ revealed, ∀f ∈ Cσ : f(X∗
0) = f(X∗

1) (2)

• Challenge. The adversary outputs two equal-length messages M0 and M1 subject to the following
constraint:

For any token σ revealed to the adversary in the Query 1 stage, let Cσ denote the set of
conjunctive queries corresponding to this token.

∀ TKσ revealed : if ∃f ∈ Cσ, f(X∗
0) = f(X∗

1) = 1, then M0 = M1 (3)

The challenger flips a random coin b and returns an encryption of (Mb,Xb) to the adversary.

• Query 2. Repeat the Query 1 stage. All tokens revealed in this stage must satisfy constraints
(2) and (3).

• Guess. The adversary outputs a guess b′ of b.

The advantage of an adversary A in the above game is defined to be AdvA = |Pr[b = b′] − 1/2|. We
say that a dHVE construction is selectively secure if for all polynomial time adversaries, its advantage
in the above game is a negligible function of λ.

9

Observation 1. Anonymous Hierarchical Identity-Based Encryption (AHIBE) is a special case of the
above-defined dHVE scheme.

AHIBE is very similar to the dHVE definition given above. The only difference is that in AHIBE,
the function family queried is Cσ, where σ has the special structure such that S(σ) = [d] where d ∈ [ℓ],
W(σ) = [d + 1, ℓ], and D(σ) = ∅. In fact, we show that the new security definition and the techniques
we use to construct dHVE can be directly applied to give an AHIBE scheme with shorter private key
size. While the previous AHIBE scheme by Boyen and Waters requires O(D2) private key size, our
new construction has O(D) private key size, where D is the maximum depth of the hierarchy. See
Appendix E for details of the construction.

4 Background on Pairings and Complexity Assumptions

Our construction relies on bilinear groups of composite order n = pqr, where p, q, and r are distinct
large primes. We assume that the reader is familiar with bilinear groups. More background on
composite-order bilinear groups can be found in Appendix C.

Our construction relies on two complexity assumptions: the Bilinear Diffie-Hellman assumption
(BDH) and the generalized composite 3-party Diffie-Hellman assumption (C3DH). Although our con-
struction requires only bilinear groups whose order is the product of three primes n = pqr, we state
our assumptions more generally for bilinear groups of order n where n is the product of three or more
primes.

We begin by defining some notation. We use the notation GG to denote the group generator
algorithm that takes as input a security parameter λ ∈ Z

>0, a number k ∈ Z
>0, and outputs a tuple

(p, q, r1, r2, . . . , rk, G, GT , e) where p, q, r1, r2, . . . , rk are k +2 distinct primes, G and GT are two cyclic
groups of order n = pq

∏k
i=1 ri, and e : G

2 → GT is the bilinear mapping function. We use the notation
Gp, Gq, Gr1

, . . . , Grk
to denote the respective subgroups of order p, q, r1, . . . , rk of G. Similarly, we use

the notation GT,p, GT,q, GT,r1
, . . . , GT,rk

to denote the respective subgroups of order p, q, r1, . . . , rk of
GT .

The Bilinear Diffie-Hellman assumption. We review the standard Bilinear Diffie-Hellman as-
sumption, but in groups of composite order. For a given group generator GG define the following
distribution P (λ):

(p, q, r1, . . . , rk, G, GT , e)
R

← GG(λ, k), n← pq
∏k

i=1 ri,

gp
R

← Gp, gq
R

← Gq, h1
R

← Gr1
, . . . , hk

R

← Grk

a, b, c
R

← Zn

Z̄ ←
(
(n, G, GT , e), gq, gp, h1, h2, . . . , hk, ga

p , gb
p, gc

p

)

T ← e(gp, gp)
abc

Output (Z̄, T)

Define algorithm A’s advantage in solving the composite Bilinear Diffie-Hellman problem as

cBDHAdvGG,A(λ) :=
∣∣Pr[A(Z̄, T) = 1]− Pr[A(Z̄, R) = 1]

∣∣

where (Z̄, T)
R
← P (λ) and R

R
← GT,p. We say that GG satisfies the composite Bilinear Diffie-Hellman

assumption (cBDH) if for any polynomial time algorithm A, cBDHAdvGG,A(λ) is a negligible function
of λ.

The generalized composite 3-party Diffie-Hellman assumption. We also rely on the composite
3-party Diffie-Hellman assumption first introduced by Boneh and Waters [9]. For a given group
generator GG define the following distribution P (λ):

10

(p, q, r1, . . . , rk, G, GT , e)
R

← GG(λ, k), n← pq
∏k

i=1 ri,

gp
R

← Gp, gq
R

← Gq, h1
R

← Gr1
, . . . , hk

R

← Grk

R1, R2, R3
R

← Gq, a, b, c
R

← Zn

Z̄ ←
(
(n, G, GT , e), gq, gp, h1, h2, . . . , hk, ga

p , gb
p, gab

p ·R1, gabc
p ·R2

)

T ← gc
p · R3

Output (Z̄, T)

Define algorithm A’s advantage in solving the generalized composite 3-party Diffie-Hellman problem
for GG as C3DH AdvGG,A(λ) :=

∣∣Pr[A(Z̄, T) = 1]− Pr[A(Z̄, R) = 1]
∣∣, where (Z̄, T)

R
← P (λ) and R

R
←

G. We say that GG satisfies the composite 3-party Diffie-Hellman assumption (C3DH) if for any
polynomial time algorithm A, its advantage C3DH AdvGG,A(λ) is a negligible function of λ.

The assumption is formed around the intuition that it is hard to test for Diffie-Hellman tuples in
the subgroup Gp if the elements have a random Gq subgroup component.

Remark 5. Consider bilinear groups of order n = pqr, where p, q, and r are three distinct primes. In
the above generalized composite 3-party Diffie-Hellman assumption, whether to call a prime p, q, or
r is merely a nominal issue. So equivalently, we may assume that it is hard to test for Diffie-Hellman
tuples in the subgroup Gp, if each element is multiplied by a random element from Gr instead of Gq.

5 dHVE Construction

We construct our dHVE scheme by extending the HVE construction by Boneh and Waters [9] (also
referred to as the BW06 scheme). One of the challenges that we must overcome is how to add delegation
in anonymous IBE systems.

Our primary challenges arise from providing delegation in the anonymous setting. Delegation
is easier in nonanonymous IBE systems, such as in HIBE [4]. In the HIBE construction [4], the
public key contains an element corresponding to each attribute, and the delegation algorithm can use
these elements in the public key to rerandomize the tokens. In anonymous systems, however, as the
encryption now has to hide the attributes as well, we have extra constraints on what information we
can release in the public key. This restriction on rerandomizing components is the primary hurdle we
must overcome.

5.1 Construction

In our construction, the public key and the ciphertext are constructed in a way similar to the BW06
scheme. However, we use a new technique to reduce the number of group elements in the ciphertext
asymptotically by one half. Our token consists of two parts, a decryption key part denoted DK and
a delegation component denoted DL. The decryption key part DK is similar to that in the BW06
scheme. The delegation component DL is more difficult to construct, since we need to make sure that
the delegation component itself does not leak unintended information about the plaintext encrypted.

We will use Σ = Zm for some integer m. Recall that Σ?,⊥ := Σ ∪ {?,⊥}, where ? denotes a
delegatable field, and ⊥ denotes a “don’t care” field.

Setup(1λ) The setup algorithm first chooses random large primes p, q, r > m and creates a bilinear
group G of composite order n = pqr, as specified in Section 4. Next, it picks random elements

(u1, h1), . . . , (uℓ, hℓ) ∈ G
2
p , g, v, w,w ∈ Gp , gq ∈ Gq, gr ∈ Gr

and an exponent α ∈ Zp. It keeps all these as the secret key MSK.

It then chooses 2ℓ + 3 random blinding factors in Gq:

(Ru,1, Rh,1), . . . , (Ru,ℓ, Rh,ℓ) ∈ Gq and Rv, Rw, Rw ∈ Gq.

11

For the public key, PK, it publishes the description of the group G and the values

gq, gr, V = vRv, W = wRw, W = wRw, A = e(g, v)α,

(
U1 = u1Ru,1, H1 = h1Rh,1

. . .
Uℓ = uℓRu,ℓ, Hℓ = hℓRh,ℓ

)

The message space M is set to be a subset of GT of size less than n1/4.

Encrypt(PK, X ∈ Σℓ, M ∈M ⊆ GT) Assume that Σ ⊆ Zm. Let X = (x1, . . . , xℓ) ∈ Z
ℓ
m. The

encryption algorithm first chooses a random ρ ∈ Zn and random Z, Z0, Zφ, Z1, Z2, . . . , Zℓ ∈ Gq.
(The algorithm picks random elements in Gq by raising gq to random exponents from Zn.) Then,
the encryption algorithm outputs the ciphertext:

CT =

(
C̃ = MAρ, C = V ρZ, C0 = W ρZ0, Cφ = W

ρ
Zφ,




C1 = (Ux1

1 H1)
ρZ1,

C2 = (Ux2

2 H2)
ρZ2,

.

Cℓ = (Uxℓ

ℓ Hℓ)
ρZℓ




)

Remark 6. We note that the ciphertext size is cut down by roughly a half when compared to the
BW06 construction [9]. Therefore, our construction immediately implies an HVE scheme with
asymptotically half the ciphertext size as the original BW06 construction.

GenToken(PK,MSK, σ ∈ Σℓ
?,⊥) The token generation algorithm will take as input the master secret

key MSK and an ℓ-tuple σ = (σ1, . . . , σℓ) ∈ Σℓ
?,⊥. The token for σ consists of two parts: (1) a

decryption key component denoted DK, and (2) a delegation component denoted DL.

• The decryption key component DK is composed in a way similar to that of the original
HVE construction [9]. Recall that S(σ) denotes the indices of the fixed fields, i.e., indices
j such that σj ∈ Σ. Randomly select γ, γ ∈ Zp and tj ∈ Zp for all j ∈ S(σ). Pick random
Y, Y0, Yφ ∈ Gr and Yj ∈ Gr for all j ∈ S(σ). Observe that picking random elements from
the subgroup Gr can be done by raising gr to random exponents in Zn. Next, output the
following decryption key component:

DK =
(
K = gαwγwγ

∏
j∈S(σ)(u

σj

j hj)
tj Y, K0 = vγY0, Kφ = vγYφ, ∀j ∈ S(σ) : Kj = vtj Yj

)

• The delegation component DL is constructed as below. Recall that W(σ) denotes the set
of all indices i where σi = ?. Randomly select Yi,u, Yi,h ∈ Gr. For each i ∈ W(σ), for each
j ∈ S(σ) ∪ {i}, randomly select si,j ∈ Zp, Yi,j ∈ Gr. For each i ∈ W(σ), randomly select
γi, γi ∈ Zp, Yi,h, Yi,u, Yi,0, Yi,φ ∈ Gr. Next, output the following delegation component DLi

for coordinate i:

∀i ∈ W(σ) : DLi =

(
Li,h = h

si,i

i wγiwγi
∏

j∈S(σ)(u
σj

j hj)
si,jYi,h, Li,u = u

si,i

i Yi,u

Li,0 = vγiYi,0, Li,φ = vγiYi,φ, ∀j ∈ S(σ) ∪ {i} : Li,j = vsi,jYi,j

)

Remark 7. Later, if we want to delegate on the kth field by fixing it to I ∈ Σ, we will multiply
LI

k,u to Lk,h, resulting in something similar to the decryption key DK (except without the gα

term). Observe that the Li,h terms encode all the fixed fields (i.e., S(σ)). This effectively
restricts the use of the delegation components, such that they can only be added on top of the
fixed fields, partly ensuring that the delegation components do not leak unintended information.

12

Delegate(PK, σ, σ′) Given a token for σ ∈ Σℓ
?,⊥, the Delegate algorithm computes a token for σ′ ≺ σ.

Without loss of generality, we assume that σ′ fixes only one delegatable field of σ to a symbol
in Σ or to ⊥. Clearly, if we have an algorithm to perform delegation on one field, then we can
perform delegation on multiple fields. This can be achieved by fixing the multiple delegatable
fields one by one.

We now describe how to compute TKσ′ from TKσ. Suppose σ′ fixes the kth coordinate of σ. We
consider the following two types of delegation: 1) the kth coordinate is fixed to some value in
the alphabet Σ, and 2) the kth coordinate is set to ⊥, i.e., it becomes a “don’t care” field.

Type 1: σ′ fixes the kth coordinate of σ to I ∈ Σ, and all other coordinates of σ remain unchanged.
In this case, S(σ′) = S(σ) ∪ {k}, and W(σ′) = W(σ)\{k}. (Recall that S(σ) denotes the
set of indices j where σj ∈ Σ, and W(σ) denotes the set of delegatable fields of σ.)

Step 1: Let (DK,DL) denote the parent token. Pick a random exponent µ ∈ Zn and reran-
domize the delegation component DL by raising every element in DL to µ. Denote the
rerandomized delegation component:

∀i ∈ W(σ) : D̂Li =

(
L̂i,h = Lµ

i,h, L̂i,u = Lµ
i,u,

L̂i,0 = Lµ
i,0, L̂i,φ = Lµ

i,φ, ∀j ∈ S(σ) ∪ {i} : L̂i,j = Lµ
i,j

)

In addition, compute a partial decryption key component with the kth coordinate fixed
to I:

pDK =
(
T = L̂I

k,uL̂k,h, T0 = L̂k,0, Tφ = L̂k,φ, ∀j ∈ S(σ′) : Tj = L̂k,j

)

The partial decryption key pDK is formed similarly to the decryption key DK, except
that pDK does not contain the term gα.

Step 2: Compute |W(σ′)| rerandomized versions of the above. For all i ∈ W(σ′), randomly
select τi ∈ Zn, and compute:

pDKi =
(
Γi = T τi , Γi,0 = T τi

0 , Γi,φ = T τi

φ , ∀j ∈ S(σ′) : Γi,j = T τi

j

)

Step 3: Compute the decryption key component DK′ of the child token. DK′ is computed from
two things: 1) DK, the decryption key component of the parent token and 2) pDK, the
partial decryption key computed in Step 1. In particular, pDK is the partial decryption
key with the kth field fixed; however, as pDK does not contain the gα term, we need to
multiply appropriate components of pDK to those in DK.
To compute DK′, first, randomly select Y ′, Y ′

0 , Y ′
φ ∈ Gr. For all j ∈ S(σ′), randomly

select Y ′
j ∈ Gr. Now output the following DK′:

DK′ =

(
K ′ = KTY ′, K ′

0 = K0T0Y
′
0 , K ′

φ = KφTφY ′
φ, K ′

k = TkY
′
k,

∀j ∈ S(σ) : K ′
j = KjTjY

′
j

)

Step 4: Compute the delegation component DL′ of the child token. DL′ is composed of a portion
DL′i for each i ∈ W(σ′). Moreover, each DL′i is computed from two things: 1) D̂Li as
computed in Step 1 and 2) pDKi as computed in Step 2.
Follow the steps below to compute DL′. For each i ∈ W(σ′), randomly select Y ′

i,h, Y ′
i,u, Y ′

i,0, Y
′
i,φ

from Gr. For each i ∈ W(σ′), for each j ∈ S(σ) ∪ {i, k}, pick at random Y ′
i,j from Gr.

Compute the delegation component DL′ of the child token:

∀i ∈ W(σ′) : DL′i =




L′
i,h = L̂i,hΓiY

′
i,h, L′

i,u = L̂i,uY ′
i,u,

L′
i,0 = L̂i,0Γi,0Y

′
i,0, L′

i,φ = L̂i,φΓi,φY ′
i,φ,

L′
i,i = L̂i,iY

′
i,i, L′

i,k = Γi,kY
′
i,k, ∀j ∈ S(σ) : L′

i,j = L̂i,jΓi,jY
′
i,j




13

Type 2: In Type 2 delegation, σ′ fixes the kth coordinate of σ to ⊥. In this case, S(σ′) = S(σ), and
W(σ′) =W(σ)\{k}. The child token is formed by removing the part DLk from the parent
token:

TKσ′ = (DK, DL\{DLk})

Remark 8. It is not hard to verify that delegated tokens have the correct form, except that
their exponents are no longer distributed independently at random, but are correlated with the
parent tokens. In the proof in Appendix B, we show that Type 1 delegated tokens “appear” (in a
computational sense) as if they were generated directly by calling the GenToken algorithm, that
is, with exponents completely at random. This constitutes an important idea in our security
proof.

Query(PK,TKσ,CT, σ′) A token for σ ∈ Σℓ
?,⊥ allows one to evaluate a set of functions Cσ defined by

Equation (1) from the ciphertext. Let σ′ ≺ σ and assume σ′ has no delegatable fields. Then σ′

represents a single function fσ′ (a conjunctive equality test), and the Query algorithm allows us
to evaluate fσ′ over the ciphertext.

To evaluate fσ′ from the ciphertext using TKσ, first call the Delegate algorithm to compute a de-
cryption key for σ′. Write this decryption key in the form DK = (K, K0, Kφ, ∀j ∈ S(σ′) : Kj).

Furthermore, parse the ciphertext as CT =
(
C̃, C, C0, Cφ, ∀j ∈ ℓ : Cj

)
.

Use the same algorithm as the original HVE construction to perform the query. First, compute

M← C̃ · e(C,K)−1 · e(C0,K0)e(Cφ,Kφ)
∏

j∈S(σ′)

e(Cj ,Kj) (4)

If M 6∈ M, output 0, indicating that fσ′ is not satisfied. Otherwise, output 1, indicating that fσ′

is satisfied and also output M. We explain why the Query algorithm is correct in Appendix A.

5.2 Security of our construction

Theorem 5.1. Assuming that the Bilinear Diffie-Hellman assumption and the generalized composite
3-party Diffie-Hellman assumptions hold in G, then the above dHVE construction is selectively secure.

We explain the main techniques used in the proof; however, we defer the detailed proof to Ap-
pendix B. In our main construction, delegated tokens have certain correlations with their parent
tokens. As a result, the distribution of delegated tokens differs from tokens generated freshly at
random by calling the GenToken algorithm. A major technique used in the proof is “token indistin-
guishability”: although delegated tokens have correlations with their parent tokens, they are in fact
computationally indistinguishable from tokens freshly generated through the GenToken algorithm.
(Strictly speaking, Type 1 delegated tokens are computationally indistinguishable from freshly gen-
erated tokens.) This greatly simplifies our simulation, since now the simulator can pretend that all
Type 1 tokens queried by the adversary are freshly generated, without having to worry about their
correlation with parent tokens. Intuitively, the above notion of token indistinguishability relies on the
C3DH assumption: if we use a random hiding factor from Gr to randomize each term in the token,
then DDH becomes hard for the subgroup Gp.

6 Conclusions and Future Directions

We study delegation in predicate encryption systems. We propose new security definitions for del-
egation in predicate encryption and construct a delegatable predicate encryption scheme supporting
conjunctive queries. Our main contributions follow:

14

• We propose a new definition for the security of delegation in predicate encryption and identity-
based encryption systems. This new definition allows an adversary to specify to the challenger
the path of derivation for each token being queried. Using the new security definition, delegated
tokens need not be identically distributed as tokens directly generated by the authority. This
turns out to be a crucial observation in both our construction and our proof.

• We realized a delegatable predicate encryption scheme for Hidden Vector Encryption. Our main
challenge was to provide a way for the delegator to “rerandomize” keys. This proved to be
challenging since the natural techniques from nonanonymous schemes did not apply. We created
a new technique in our construction, where we multiply each element in the token with a random
group element from the third subgroup Gr. In this way, a delegated token derived using the
Delegate algorithm would appear computationally indistinguishable from a token picked freshly
at random.

• As a side product of our construction, we show that similar techniques can be used to obtain
a more efficient AHIBE construction with linear private key size. (In comparison, the BW
construction [10] has quadratic private key size.) Our construction also implies an HVE con-
struction with the ciphertext size cut down by half asymptotically, in comparison with the BW06
construction [9].

In the future it would be interesting to explore the limits of delegation in predicate encryption
systems. One attractive target is the recent system of Katz, Sahai, and Waters [18] that allows for
inner-product predicates and currently represents the most expressive predicate encryption system.
A first step for this would be even to decide where to define the desired delegation semantics. For
instance, it is unclear whether one should attempt to do this at the core inner-product layer or at
some other level.

Acknowledgment

We thank John Bethencourt and Jason Franklin for insightful suggestions and comments. In addition,
we are grateful to the anonymous reviewers for their helpful evaluation.

References

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John Malone-
Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited: Consistency proper-
ties, relation to anonymous IBE, and extensions. In CRYPTO, 2005.

[2] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryption. In Pro-
ceedings of the 2007 IEEE Symposium on Security and Privacy, 2007.

[3] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without random
oracles. In EUROCRYPT, 2004.

[4] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant size
ciphertext. In EUROCRYPT, pages 440–456, 2005.

[5] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption with
keyword search. In EUROCRYPT, pages 506–522, 2004.

[6] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. In Joe Kilian, editor,
Proceedings of Crypto 2001, volume 2139 of LNCS, pages 213–29. Springer-Verlag, 2001.

[7] Dan Boneh, Craig Gentry, and Michael Hamburg. Space-efficient identity based encryption without pair-
ings. In Proceedings of FOCS, 2007.

[8] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with short ciphertexts
and private keys. In EUROCRYPT, pages 573–592, 2006.

15

[9] Dan Boneh and Brent Waters. A fully collusion resistant broadcast trace and revoke system with public
traceability. In ACM Conference on Computer and Communication Security (CCS), 2006.

[10] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without random
oracles). In CRYPTO, 2006.

[11] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In EURO-
CRYPT, pages 255–271, 2003.

[12] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryption.
In EUROCRYPT, pages 207–222, 2004.

[13] Melissa Chase. Multi-authority attribute based encryption. In TCC, pages 515–534, 2007.

[14] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In Proceedings of the 8th
IMA International Conference on Cryptography and Coding, pages 360–363, London, UK, 2001. Springer-
Verlag.

[15] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In ASIACRYPT, 2002.

[16] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In ACM Conference on Computer and Communications Security (CCS),
2006.

[17] Jeremy Horwitz and Ben Lynn. Towards hierarchical identity-based encryption. In Proceedings of Eurocrypt,
2002.

[18] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In Eurocrypt ’08, to appear, 2008.

[19] Matthew Pirretti, Patrick Traynor, Patrick McDaniel, and Brent Waters. Secure attribute-based systems.
In CCS ’06: Proceedings of the 13th ACM conference on Computer and communications security, 2006.

[20] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457–473, 2005.

[21] Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings of Crypto, 1984.

[22] Elaine Shi, John Bethencourt, T-H. Hubert Chan, Dawn Song, and Adrian Perrig. Multi-dimension range
query over encrypted data. In IEEE Symposium on Security and Privacy, May 2007.

[23] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches on encrypted
data. In IEEE Symposium on Security and Privacy, 2000.

16

A Correctness

We explain why the Query algorithm is correct. Let (M,X) denote the plaintext encrypted, and let
σ′ denote the conjunctive query being evaluated in the Query algorithm.

• If the plaintext X satisfies the query, i.e., if fσ′(X) = 1, a simple calculation shows that the
Query algorithm outputs the message M. The calculation relies on the fact that if a ∈ Gq and
b ∈ Gr, then e(a, b) = 1. Observe that in our construction, each term in the ciphertext (except
C̃) contains a random hiding factor from the subgroup Gq, and each term in the token contains
a random hiding factor from the subgroup Gr. When one performs a pairing operation on the
ciphertext and the token, the subgroups Gq and Gr “disappear”, and the result of the pairing is
an element of GT,p.

• If the plaintext X does not satisfy the query, i.e., if fσ′(X) = 0, due to an argument similar to
the BW06 [9] paper, the probability Pr[Query((PK,TKσ,CT, σ′) 6= 0] is negligible. See Lemma
5.2 of BW06 for details.

B Proof

We prove the security of our construction. We prove selective security, where the adversary commits
to two strings X∗

0 and X∗
1 at the beginning of the security game.

The challenge in proving security is that under our new security game, the simulation needs to
reflect how tokens are delegated. In other words, delegated tokens are correlated with their parent
tokens in some way, and the simulation should reflect this fact.

Our overall strategy is for the simulator to generate tokens by calling the original GenToken algo-
rithm whenever possible, even when the token is delegated. More specifically, for all Type 1 delegation
queries, the simulator generates a freshly randomized token by calling the GenToken algorithm, rather
than the Delegate algorithm. As we mentioned, this simulation does not reflect the real security game,
since the Type 1 delegated tokens are no longer correlated with their parent tokens. However, we over-
come this by showing that the simulation is computationally indistinguishable from the real security
game. Intuitively, the indistinguishability property comes from the random group element from the
third subgroup Gr that we use to rerandomize the tokens. Our technique is novel in the sense that in
proving semantic security over the ciphertext, we actually rely on “semantic security” over the tokens.

B.1 Sequence of games

To prove security, we define a sequence of games, Game0,Game1, . . . ,Game5.

Game0. Let Game0 denote the real selective security game as defined in Section 2.2.

Game1. We first modify Game0 slightly into a new game Game1. Game1 is almost identical to Game0,
except in the way the tokens are generated. In Game1, whenever the adversary issues a “create
delegated token” query, depending on which type of delegation query it is, the challenger performs the
following:

• Type 1: The challenger calls the GenToken algorithm to generate a fresh token, and gives it to
the adversary.

• Type 2: The challenger generates the token in the normal way by calling the Delegate algorithm.

Remark 9. The difference between Game0 and Game1 lies in the fact that in the real game Game0,
child tokens are always correlated with their parent tokens. In game Game1, a Type 1 delegated token
is no longer correlated with its parent token; however, Type 2 delegated tokens are still correlated
with their parent tokens.

17

Intuitively, if we use the Gr subgroup to randomize the tokens, no polynomially bounded adversary
is able to tell Game0 apart from Game1. In other words, the advantage of the adversary in winning
Game0 is almost the same as her advantage in winning Game1. Therefore, it suffices to prove security
using Game1 instead of Game0. This simplifies the proof, since in Game1, Type 1 delegated tokens are
formed in the same way as nondelegated tokens.

Lemma B.1. Assuming that the generalized 3-party Diffie-Hellman assumption holds in G, then
no polynomially bounded adversary can successfully distinguish Game0 and Game1 with more than
negligible advantage.

Game2. Next, we modify Game1 slightly into a new game Game2. Game2 differs from Game1 also in
the way tokens are formed. To explain how Game2 differs from Game1, first observe that any token σ
queried must satisfy one of the following two cases:

• Matching tokens. The decryption key part of TKσ matches both of the two selected points X∗
0

and X∗
1 . In this case, for all i ∈ W(σ), X∗

0,i = X∗
1,i, since otherwise TKσ would separate the two

selected points. In this case, we say that the token matches both selected points.

• Nonmatching tokens. The decryption key part of TKσ matches neither of the two selected points
X∗

0 and X∗
1 .

In Game2, in any Type 1 delegation query, if the token requested matches both of the selected points
X∗

0 and X∗
1 , the challenger picks the two exponents for w and w in DK not independently at random,

but in a correlated way: At the beginning of the security game, the challenger picks a random π ∈ Zp,
and keeps it secret from the adversary. Now if a token σ requested in a Type 1 delegation query
matches both of the selected points, the challenger picks γ = πγ when it computes DK. Similarly,
for all i ∈ W(σ), when the challenger computes DLi, it picks γi = πγi, instead of picking the two
exponents independently at random.

Lemma B.2. Assume that the C3DH assumption holds in G, Then for any polynomial time adversary,
the difference of advantage in winning Game1 and Game2 is negligible.

Remark 10. In Game1, all tokens (except Type 2 tokens) are picked independently at random. In
Game2, this is no longer true, in the sense that for certain queries, the exponents of w and w are
correlated with each other. Because of the third subgroup Gr that we use to rerandomize the tokens,
we will show that this correlation is computationally hidden from the adversary. The motivation for
introducing Game2 is that later the simulator will need to exploit this correlation in γ and γ in order
to successfully perform a simulation.

Game3. We now further modify Game2 into Game3. Game3 is almost identical to Game2 except in the
challenge ciphertext. In Game3, if M0 6= M1, the first term C̃ in the challenge ciphertext is replaced
by a random element from GT , and the rest of the ciphertext is generated as usual. If M0 = M1, the
challenge ciphertext is generated correctly.

Lemma B.3. Assume that the BDH and C3DH assumptions hold in G. Then no polynomial time
adversary can successfully distinguish Game2 and Game3 with more than negligible probability.

Game4. Next, we modify Game3 into a new game Game4. Game3 and Game4 are identical except in
the challenge ciphertext. In Game4, the simulator creates the challenge ciphertext according to the
following distribution:

C0 = W ρg−πρ′
p Z0, Cφ = W

ρ
gρ′
p Zφ

where ρ′ is picked at random from Zp.

Lemma B.4. Assume that the C3DH assumption holds in G, Then no polynomial time adversary can
successfully distinguish games Game3 and Game4 with more than negligible probability.

18

Game5. Let E denote the set of indices i such that X∗
0,i 6= X∗

1,i, where X∗
0 and X∗

1 are the two
committed points in the selective security game. We now define a new game Game5. Game5 differs
from Game4 in that for all i ∈ E, the ciphertext component Ci is replaced by a random element from
Gpq.

Lemma B.5. Assume that the C3DH assumption holds in G, Then no polynomial time adversary can
successfully distinguish Game4 and Game5 with more than negligible probability.

Notice that in Game5, the ciphertext gives no information about the point X∗
b or the message Mb

encrypted. Therefore, the adversary can win Game5 with probability at most 1/2.
We prove the above lemmas. First, we observe that from Game0 to Game2, the simulation changes

in the way the tokens are generated. We show that these changes remain computationally hidden from
any poly-time adversary.

B.2 Indistinguishability of Game0 and Game1

We prove Lemma B.1 and show that games Game0 and Game1 are computationally indistinguishable.
To do this, we perform a hybrid argument on the number of Type 1 “Create delegated token” queries
issued by the adversary, henceforth referred to as T1-delegation query for short.

Definition B.6. Let Game0,0 := Game0 denote the real game. Let q denote the number of T1-
delegation queries issued by the adversary. Define a sequence of hybrid games Game0,i for all 1 ≤ i ≤ q.
Game0,i differs from Game0 in the fact that when the adversary issues the first i T1-delegation queries,
instead of generating the delegated tokens faithfully using the Delegate algorithm, the challenger calls
the GenToken algorithm instead to generate these delegated tokens. For all the remaining queries,
the challenger computes tokens and responds faithfully as in the real game Game0. Under the above
definition, Game0,q is the same as Game1.

Claim B.7. For all 0 ≤ d ≤ q− 1, no polynomially bounded adversary can distinguish Game0,d from
Game0,d+1 with more than negligible advantage.

If we can prove the above Claim B.7, then Lemma B.1 follows by the hybrid argument.
We focus on proving Claim B.7. Intuitively, Claim B.7 relies on the following observation. Pick

h1, h2, . . . , hℓ
R
← Gp, an exponent τ

R
← Zp, and randomizing factors Y1, Y2, . . . , Yℓ, Z1, Z2, . . . , Zℓ

R
← Gr.

Now the tuple
(h1Z1, . . . , hℓZℓ, hτ

1Y1, . . . , h
τ
ℓ Yℓ)

is computationally indistinguishable from

(h1Z1, . . . , hℓZℓ, R1, . . . , Rℓ),

where (R1, . . . , Rℓ) are picked independently at random from Gpr = Gp × Gr. It is not hard to see
that this is the equivalent of the Decisional Diffie-Hellman (DDH) assumption for bilinear groups of
composite order. Since we can compute pairing in such groups, normally DDH is easy in group G.
However, if we use subgroup Gr to hide subgroup Gp, DDH becomes hard in Gp. For this reason, we
can rerandomize tokens by raising all elements to the same exponent τ , and the rerandomized token
is computationally indistinguishable from a completely rerandomized token.

We formalize the above intuition into the ℓ-composite 3-party Diffie-Hellman assumption (ℓ-C3DH).
Lemma B.8 proves that the ℓ-C3DH assumption is implied by the generalized C3DH assumption.
Therefore, we are not introducing a new assumption here.

19

Given a group generator GG, define the following distribution P (λ):

(p, q, r, G, GT , e)
R
← GG(λ, 1), n← pqr,

gp
R
← Gp, gq

R
← Gp, gr

R
← Gr

Y1, Y2, . . . , Yℓ, Z1, Z2, . . . , Zℓ
R
← Gr

h1, h2, . . . , hℓ
R
← Gp

τ
R
← Zp

X ← ((n, G, GT , e), gp, gq, gr, h1Z1, h2Z2, . . . , hℓZℓ)

Q← (hτ
1Y1, hτ

2Y2, . . . , hτ
ℓ Yℓ)

Output (X,Q)

For an algorithm A, define A’s advantage in solving the above problem:

ℓC3DH AdvGG,A(λ) :=

∣∣∣∣Pr[A(X,Q) = 1]− Pr[A(X,R) = 1]

∣∣∣∣

where (X,Q)← P (λ), and

R = (R1, R2, . . . , Rℓ)
R
← G

ℓ
pr

Lemma B.8 (ℓ-composite 3-party Diffie-Hellman). Assume that the generalized composite 3-party
Diffie-Hellman assumption holds in G. All probabilistic polynomial time adversaries have negligible
advantage in solving the ℓ-C3DH problem.

Proof. By hybrid argument.

Proof of Claim B.7: Recall that in game Game0,d, when the challenger receives the first d T1-
delegation queries, it creates a completely randomized token. We show that no polynomially bounded
adversary has more than negligible advantage in distinguishing Game0,d from Game0,d+1.

We use the following sequence of games to prove Claim B.7.

Game′0,d In Step 1 of the Delegate algorithm, for the d + 1th T1-delegation query, instead of generating

D̂L = [D̂Li]i∈W(σ) faithfully by raising every element in DL to a random exponent µ, the challenger

picks D̂L to be a fresh random delegation component. We show that a polynomial time adversary
cannot distinguish between the two cases.

Game′′0,d In Step 2, instead of computing each pDKi faithfully, the challenger picks them as fresh random
decryption keys (except without the gα term). We show that a polynomial time adversary cannot
distinguish between these two cases.

It is not hard to see that if D̂L were a completely rerandomized delegation component for σ, while
each pDKi were independently rerandomized decryption keys (except without the gα part), then the
delegated token TKσ′ would be a truly rerandomized token, as if it were generated by directly calling
the GenToken algorithm. In other words, Game′′0,d = Game0,d+1. We show below that Game0,d is
indistinguishable from Game′0,d and that Game′0,d is indistinguishable from Game′′0,d.

20

Game0,d is indistinguishable from Game′0,d. We prove the above Step 1, i.e., Game′0,d is computationally
indistinguishable from Game0,d. Suppose a polynomial time adversary A can successfully distinguish
between the above two games. Let q0 denote the maximum number of “create token” and “create
Type 1 delegated token” queries made by the adversary. We build a simulator B that leverages A
to break the following ((ℓ + 1)(ℓ + 2)q0)-C3DH assumption. We use the notation ∀i, j, k to denote
∀i ∈ [q0], 0 ≤ j ≤ ℓ, k ∈ [ℓ + 2].

(p, q, r, G, GT , e)
R
← GG(λ, 1), n← pqr,

gp
R
← Gp, gq

R
← Gp, gr

R
← Gr

∀i, j, k : Yi,j,k, Zi,j,k
R
← Gr, vi,j,k

R
← Gp

τ
R
← Zp

X ← ((n, G, GT , e), gp, gq, gr, ∀i, j, k : vi,j,kZi,j,k)

Q←
(
∀i, j, k : vτ

i,j,kYi,j,k

)

Then the challenger randomly decides to give (X,Q′ = Q) or (X,Q′ = R), where R is a random vector
drawn from (Gpr)

(ℓ+1)(ℓ+2)q0 .
The simulator will leverage the adversary A to distinguish between the above two cases.

Init and Setup. At the beginning of the security game, the adversary commits two points X∗
0 and

X∗
1 .

The simulator picks v
R
← Gp, and for 1 ≤ i ≤ ℓ, the simulator sets ui = vxi , hi = vyi , where

xi and yi are random exponents from Zn. The simulator also picks w = vz and w = vz . The
remaining public parameters and secret key components are picked normally according to the
Setup algorithm.

Query 1 and 2. Recall that the adversary makes a number of queries of the following types: 1) create
token, 2) create delegated token, 3) reveal token. In this simulation, the simulator computes and
saves a token internally whenever a “create token” or “create delegated token” query is made.
The simulator simply reveals the saved token whenever the adversary makes a “reveal token”
query.

Throughout the simulation, whenever the adversary asks the simulator to create a Type 2 del-
egated token, the simulator generates it faithfully by deriving it from its parent token. This
correctly reflects the relation between the child token and the parent token.

From now on, we focus on how the simulator generates Type 1 delegated tokens and nondelegated
tokens.

• Before the adversary issues the (d+1)th T1-delegation query, the simulator computes tokens
using the following strategy. Whenever the adversary asks the simulator to create a Type 1
token or nondelegated token, the simulator incorporates elements from the (ℓ+1)(ℓ+2)q0-
C3DH instance into these tokens, in a way such that all the exponents are distributed
uniformly at random. In particular, let i (1 ≤ i ≤ q0) denote the index of the current
query. We note that i is a counter for all “create delegated token” or “create Type 1
delegated token” queries, and d is a counter for all “create Type 1 delegated token” queries.
The simulator lets

K0 = vi,0,ℓ+1Zi,0,ℓ+1, Kφ = vi,0,ℓ+2Zi,0,ℓ+2, ∀k ∈ S(σ) : Kk = vi,0,kZi,0,k

21

For all j ∈ W(σ), the simulator lets

Lj,0 = vi,j,ℓ+1Zi,j,ℓ+1, Lj,φ = vi,j,ℓ+2Zi,j,ℓ+2, ∀k ∈ S(σ) ∪ {j} : Lj,k = vi,j,kZi,j,k

As the simulator knows the dlog of w,w, u1, . . . , uℓ, h1, . . . , hℓ base v, the remaining com-
ponents of the token can be generated efficiently:

K = gαKz
0Kz

φ



∏

j∈S(σ)

K
xjσj+yj

j


Y, where Y

R
← Gr (5)

∀j ∈ W(σ) :
Lj,h = L

yj

j,jL
z
j,0L

z
j,φ

(∏
k∈S(σ) Lxkσk+yk

j,k

)
Yj,h

Lj,u = L
xj

j,jYj,u

where Yj,h, Yj,u
R
← Gr (6)

• The adversary makes the (d+1)th T1-delegation query. In particular, the adversary specifies
a parent token, and asks to fix a delegatable field to some value I ∈ Σ. Assume the parent
token was created in the ith query, 1 ≤ i ≤ q0. When performing Step 1 of the Delegate
algorithm, for all j ∈ W(σ), the simulator lets

L̂j,0 = Q′
i,j,ℓ+1, L̂j,φ = Q′

i,j,ℓ+2, ∀k ∈ S(σ) ∪ {j} : L̂j,k = Q′
i,j,k

Here we use the notation Q′
i,j,k to index into the vector Q′ from the ((ℓ + 1)(ℓ + 2)q0)-

C3DH problem. As the simulator knows the dlog of w,w, u1, . . . , uℓ, h1, . . . , hℓ base v, the
remaining components of the token can be generated efficiently due to Equations (5) and
(6).

• For all the remaining queries, the simulator responds faithfully as in the real game.

Clearly, if Q′ = Q in the ((ℓ+1)(ℓ+2)q0)-C3DH instance, then the above simulation is identically
distributed as Game0,d. Otherwise, the above simulation is identically distributed as Game′0,d.

Challenge. The simulator generates the challenge ciphertext as normal.

Guess. If the adversary has ǫ difference in its advantage in Game0,d and Game′0,d, it is not hard to
see that the simulator has a comparable advantage in solving the C3DH instance.

Game′0,d is indistinguishable from Game′′0,d. Similarly, we can show that Step 2 above is also true,
i.e., no polynomial time adversary can distinguish between Game′0,d and Game′′0,d with nonnegligible
probability. To prove this, we further define a sequence of hybrid games. Suppose that in Game′0,d,c

where 0 ≤ c ≤ W(σ′), the first c pDKi’s are replaced by independent random decryption keys (without
the gα part). We show that a polynomial time adversary cannot distinguish between Game′0,d,c and
Game′0,d,c+1. Then, by the hybrid argument, Game′0,d and Game′′0,d (which is identically distributed as
Game0,d+1) are computationally indistinguishable.

The simulator tries to solve the following ℓ-C3DH instance:

(p, q, r, G, GT , e)
R
← GG(λ, 1), n← pqr,

gp
R
← Gp, gq

R
← Gp, gr

R
← Gr

Y1, Y2, . . . , Yℓ, Z1, Z2, . . . , Zℓ
R
← Gr

v1, v2, . . . , vℓ
R
← Gp

τ
R
← Zp

X ← ((n, G, GT , e), gp, gq, gr, v1Z1, v2Z2, . . . , vℓZℓ)

Q← (vτ
1Y1, vτ

2Y2, . . . , vτ
ℓ Yℓ)

22

The simulator tries to distinguish between (X,Q′ = Q) and (X,Q′ = R), where R is a random
vector from Gpr. The simulator leverages an adversary A who can distinguish between Game′0,d,c and
Game′0,d,c+1.

Init and Setup. At the beginning of the game, the simulator sets up public parameters and a secret
key by choosing v

R
← Gp. For 1 ≤ i ≤ ℓ, the simulator sets ui = vxi , hi = vyi , where xi and yi are

random exponents from Zn. The simulator also picks w = vz and w = vz. The remaining public
parameters and secret key components are picked normally according to the Setup algorithm.

Query 1 and 2. The adversary issues a number of queries to the simulator. Like before, the simulator
internally computes and saves a token whenever it receives a “create token” or “create delegated
token” query. The simulator simply reveals to the adversary the previously computed token in
a “reveal token” query.

The simulator treats Type 2 tokens as a special case. Whenever the adversary asks the simulator
to create a Type 2 token, the simulator computes it faithfully by deriving the token from the
specified parent. This correctly reflects the relation between the child token and its parent.
Henceforth, we focus on how the simulator computes Type 1 delegated tokens and nondelegated
tokens.

• Before the adversary makes the (d+1)th T1-delegation query, the simulator always computes
each Type 1 delegated token and nondelegated token freshly at random.

• At the (d + 1)th T1-delegation query, the adversary specifies a parent token, and requests
to fix the kth coordinate to some value I ∈ Σ. To answer this query, the simulator first
generates D̂Li for all i ∈ W(σ), and pDK. For i ∈ W(σ)\{k}, the simulator picks at random
L̂i,0, L̂i,φ and L̂i,j for all j ∈ S(σ) ∪ {i}. The simulator lets

T0 = L̂k,0 = vℓ+1Zℓ+1, Tφ = L̂k,φ = vℓ+2Zℓ+2, ∀j ∈ S(σ′) : Tj = L̂k,j = vjZj

As the simulator knows the dlog of w,w, u1, . . . , uℓ, h1, . . . , hℓ base v, the remaining com-
ponents of D̂Li’s and pDK can be generated efficiently in a way similar to Equations (5)
and (6). The only difference is that pDK does not contain the gα term, while a decryption
key DK does.

The simulator picks the first c pDKi’s as fresh random (partial) decryption keys.

Let i be the c + 1th index in W(σ′). For pDKi, the simulator sets

Γi,0 = Q′
ℓ+1, Γi,φ = Q′

ℓ+2 ∀j ∈ S(σ′) : Γi,j = Q′
j

We use the notation Q′
j to index into the jth element of the vector Q′ from the ℓ-C3DH

problem. Again, since the simulator knows the dlog of w,w, u1, . . . , uℓ, h1, . . . , hℓ base v,
the remaining terms in pDKi can be generated efficiently.

For all the remaining pDKi’s, the simulator generates them normally as in the original
Delegate algorithm.

• For all the remaining queries, the simulator generates them faithfully.

Challenge. The simulator generates the challenge ciphertext as normal.

Guess. Notice that if Q′ = Q in the ℓ-C3DH problem, then the above simulation is identically
distributed as Game0,d,c; otherwise, the above simulation is identically distributed as Game0,d,c+1.
Therefore, if a polynomial time adversary could successfully distinguish between Game0,d,c and
Game0,d,c+1, then the simulator would be able to solve the ℓ-C3DH problem with nonnegligible
probability.

23

B.3 Indistinguishability of Game1 and Game2

We prove Lemma B.2.
Let q denote the maximum number of T1-delegation queries for a matching token made by the

adversary. We show that if a poly-time adversary has nonnegligible difference in its advantage in Game1

and Game2, we can build a simulator that leverages this adversary to break the modified q(ℓ+1)-C3DH
assumption. In the following, we use ∀i, j to mean ∀i ∈ [q], 0 ≤ j ≤ ℓ.

(p, q, r, G, GT , e)
R
← GG(λ, 1), n← pqr,

gp
R
← Gp, gq

R
← Gp, gr

R
← Gr

∀i, j : Yi,j,1, Yi,j,2
R
← Gr

v1, v2
R
← Gp

∀i, j : τi,j
R
← Zp

Q←
(
v

τi,j

1 Yi,j,1, v
τi,j

2 Yi,j,2

)

The modified q(ℓ + 1)-C3DH assumption says that given randomly (Q′ = Q) or (Q′ = R) where
R is a random vector of length q(ℓ + 1) from Gpr, a poly-time adversary cannot distinguish whether
Q′ = Q or Q′ = R. The modified q(ℓ + 1)-C3DH assumption follows from the generalized C3DH
assumption by the hybrid argument. Hence, we are not introducing a new assumption here.

Suppose the simulator is randomly given (Q′ = Q) or (Q′ = R) where R is a random vector of
length q(ℓ + 1) from Gpr. Now the simulator tries to distinguish between the two cases.

The simulator first generates public and secret keys. The simulator picks v ∈ Gp at random. For
1 ≤ i ≤ ℓ, the simulator sets ui = vxi , hi = vyi , where xi and yi are random exponents from Zn. The
simulator also picks w = vz and w = vz, where z and z are also random exponents from Zn. The
simulator proceeds and generates the rest of public and secret keys as normal.

We explain how the simulator answers the adversary’s queries. When the adversary makes the
ith T1-delegation query for a matching token, the simulator computes a token by letting K0 = Q′

i,0,1

and Kφ = Q′
i,0,2. This fixes the exponents γ and γ, although the simulator does not know what γ

and γ really are. The simulator picks the remaining parameters needed as normal, and computes the
decryption key part DK. Notice that even though the simulator does not know γ or γ, DK can be
efficiently computed, since the simulator knows the dlog of w,w base v.

Similarly, for delegation component DLj where j ∈ W(σ), the simulator lets Li,0 = Q′
i,j,1, Li,φ =

Q′
i,j,2, picks the remaining parameters needed as normal, and computes DLj. By the same reasoning,

even though the simulator does not know γj or γj , DLj can be efficiently computed since the simulator
knows the dlog of w,w base v.

We observe that if Q′ = Q, then the above simulation would be identically distributed as Game2.
Otherwise, if Q′ = R, the above simulation would be identically distributed as Game1. Therefore, if a
poly-time adversary has nonnegligible difference in its advantage in distinguishing Game1 and Game2,
the simulator would be able to break the modified q(ℓ + 1)-C3DH assumption.

Until now, we have shown that the simulator can change the way tokens are computed such that
these changes remain computationally hidden from the adversary. Now we show that if the simulator
changes certain parts of the ciphertext to random, a poly-time adversary cannot distinguish with more
than negligible advantage.

In all the simulations described below, the simulator will compute tokens only when a “reveal
token” query is made. When the adversary makes a “create token” or “create delegated token” query,
the simulator simply records that query without computing the actual token created. In particular,
in some of these simulations, the simulator is not able to compute all tokens. However, the simulator

24

is always able to compute a token in a “reveal token” query. Recall that a token σ represents a
set of conjunctive queries over the point X encrypted. Any token σ requested in a “reveal token”
query must satisfy the condition that for any function f ∈ Cσ (f is a conjunctive query on X ∈ Z

ℓ
m),

f(X∗
0) = f(X∗

1). Henceforth, we use the terminology σ does not separate the two selected points X∗
0

and X∗
1 to describe the above condition. In all the simulations below, the simulator is always able to

compute a token σ, as long as σ does not separate the two selected points.
In the simulations described below that change certain parts of the ciphertext, an adversary can

ask the simulator to reveal a token of the following types: 1) nondelegated, 2) Type 1 delegated, 3)
Type 2 delegated. Clearly, nondelegated tokens are distributed independently from other tokens. Due
to Lemma B.1, Type 1 tokens appear to be uncorrelated with their parent tokens. Therefore, the
simulator always computes nondelegated and Type 1 tokens freshly at random. By contrast, Type 2
tokens are correlated with their ancestor tokens, and thus require special treatment. The simulator
must construct Type 2 tokens such that they reflect the correct relationship with their ancestors.
Before explaining how the simulations are performed, we describe a general strategy the simulator
uses to generate Type 2 delegated tokens, since they require special treatment different from that for
nondelegated tokens and Type 1 delegated tokens.

B.4 Generating Type 2 delegated tokens

The simulator uses a “book-keeping” technique. We use the notation TKσ′ ≺2 TKσ to mean that
TKσ′ is derived from TKσ through a Type 2 delegation operation. Whenever the adversary asks
the simulator to reveal a Type 2 delegated token, instead of computing a fresh token, the simulator
examines the history of queries, and finds the sequence of Type 2 delegation queries that created this
token,

TKσk
≺2 TKσk−1

≺2 . . . ≺2 TKσ1

where TKσk
:= TKσ is the currently requested token, and TKσ1

is a nondelegated token or a Type 1
delegated token. We note that the simulator might not be able to compute all these tokens. However,
the simulator can compute a token if the token does not separate the two selected points X∗

0 and X∗
1 .

If a token TKσi
(1 ≤ i ≤ k) in the above sequence has been computed by the simulator in the

past, the simulator simply derives TKσ from TKσi
using the Delegate algorithm, and returns it to the

adversary. In particular, σ fixes some delegatable coordinates of σi to ⊥, and the simulator simply
removes the corresponding delegation components from TKσi

to form TKσ. Otherwise, if no token
in the above sequence has been computed by the simulator in the history, the simulator finds the
earliest ancestor TKσi

(1 ≤ i ≤ k) in the above sequence, such that TKσi
does not separate the two

selected points X∗
0 and X∗

1 . The simulator generates TKσi
freshly at random, and then it follows the

Delegate algorithm to generate TKσ from TKσi
(by removing the fields set to ⊥ from the delegation

components).

We now describe a sequence of simulations that replace ciphertext components by random group
elements. In these simulations, we focus on how the simulator can compute nondelegated and Type
1 tokens. Type 2 tokens are always treated as a special case using the algorithm described earlier in
this section.

B.5 Indistinguishability of Game2 and Game3

In Game3, if M0 6= M1, the challenger replaces the ciphertext component C̃ by a random group element
from GT .

The proof that Game2 and Game3 are indistinguishable to a poly-time adversary is similar to that
in the original BW06 paper [9].

We prove this in two steps:

25

• Game′2: If M0 6= M1, the challenger replaces the ciphertext component C̃ by a random group
element from GT,p. No poly-time adversary can distinguish Game′2 from Game2 with more than
negligible probability.

• Because of the subgroup decision assumption (implied by the C3DH assumption), if the simulator
replaces the ciphertext component C̃ by a random group element from GT instead of GT,p, the
adversary cannot distinguish this case from Game′2.

We first prove that Game2 is computationally indistinguishable from Game′2. Suppose the simulator
tries to solve the following BDH instance:

(p, q, r, G, GT , e)
R
← GG(λ), n← pqr, gp

R
← Gp, gq

R
← Gq, gr

R
← Gr

a, b, c
R
← Zn

Z̄ ←
(
(n, G, GT , e), gp, gq, gr, ga

p , gb
p, gc

p

)

Q← e(gp, gp)
abc

The simulator is randomly given (Z̄, Q′ = Q) or (Z̄, Q′ = R) where R is a random element in GT ,
and it tries to distinguish between these two cases.

If there exists a poly-time adversary A that has non-negligible difference in its advantage in Game2

and Game3, we can build the following simulation to solve the BDH instance.

Init. The adversary commits to two selected points X∗
0 and X∗

1 . The challenger picks a random coin
β internally.

Setup. The simulator chooses random (Ru,1, Rh,1), (Ru,2, Rh,2), . . . , (Ru,ℓ, Rh,ℓ) ∈ Gq, Rv, Rw, Rw ∈
Gq, and random z1, y1, . . . , tℓ, yℓ ∈ Zn, and x, x ∈ Zn. The simulator publishes the group description
gq, gr, V = gpRv. It lets A = e(ga

p , gb
p) and creates

Ui = (gb
p)

ziRu,i, Hi = (gb
p)

−ziX∗
β,igyi

p Rh,i

Finally, the simulator creates:
W = gx, W = gx

We observe that the parameters are distributed identically to the real scheme.

Query 1. The simulator does not compute any token when the adversary makes “create token” or
“create delegated token” queries. It computes tokens only when “reveal token” queries are made.

Recall that in Section B.4, we pointed out that Type 2 tokens require special treatment. In
addition, we gave an algorithm for the simulator to generate Type 2 tokens such that they reflect the
correct relationship with their parent tokens. Now it suffices to show that the simulator can always
compute a fresh random token, so long as the token does not separate the two selected points X∗

0 and
X∗

1 .
Whenever the adversary makes a “reveal token” query for a matching token, the simulator simply

aborts and takes a random guess. The reason is that by our definition, when the adversary asks the
simulator to reveal a matching token, the challenge messages M0 and M1 must be equal. However, in
this case, Game2 and Game3 are identical, so there can be no difference in the adversary’s advantage
in between these two games.

Whenever the adversary asks the simulator to reveal a nonmatching token, the simulator needs
to compute a token of the correct form. First, notice that the delegation components DL can be
efficiently computed, since they do not contain any unknown parameters. However, computing the
decryption key component DK is slightly more tricky. Recall that because of the way the public key is

26

formed, gα = gab
p . Therefore, the decryption key component DK contains the term gab

p . Unfortunately,

the simulator does not know gab
p , so it has to find some way to cancel out that term and still form

a correctly distributed token. The intuition is that since the token is nonmatching, there exists a
dimension i where X∗

0,i 6= σi and X∗
1,i 6= σi. We observe that the term uσi

i hi = (gb
p)

∆izigyi
p contains

(gb
p)

∆izi , where ∆i = σi −X∗
β,i 6= 0. Therefore, the simulator can pick t̂i at random from Zn, and let

ti = t̂i − a/(∆izi)

without actually computing it. And this ti is used to generate the decryption key component DK. If
the simulator picks ti in the way specified above, it is able to compute DK, since all terms containing
the unknown parameter gab

p cancel out. In particular, in the decryption key DK, K is a product of
several terms. Rewrite K:

K = gab
p wγwγ

∏

j∈S(σ)

(u
σj

j hj)
tj Y

=

(
gab
p (uσi

i hi)
ti

)
·


wγwγ

∏

j∈S(σ),j 6=i

(u
σj

j hj)
tj Y




The product term

gab
p (uσi

i hi)
ti = (uσi

i hi)
bti · (ga

p)−yi/(∆izi)

can be efficiently computed, since all terms involving gab
p cancel out. It is not hard to see that the

remaining terms in K can be efficiently generated, since the simulator knows all parameters needed.
As the simulator knows ga

p , the term Ki = vti can be efficiently computed.

Challenge. The adversary gives the simulator two messages, M0 and M1. If M0 = M1, the simulator
aborts and takes a random guess for the reason stated above.

Otherwise, the simulator chooses random Z,Z0, Zφ, Z1, Z2, . . . , Zℓ ∈ Gq, and outputs the following
challenge ciphertext:

C̃ = MβQ′, C = (gc
p)Z, C0 = (gc

p)
xZ0, Cφ = (gc

p)
xZφ, ∀i ∈ [ℓ] : Ci = (gc

p)
yiZi

Query 2. Same as phase Query 1.

Guess. The adversary outputs a guess β′. If β = β′, the simulator guesses that Q′ = Q. Otherwise,
the simulator guesses that Q′ = R. We observe that if Q′ = Q, the ciphertext component C̃ is a
faithful encryption of Mβ; otherwise, C̃ is distributed at random in GT,p. Therefore, if the adversary
has ǫ advantage in guessing β, the simulator also has ǫ advantage in solving the BDH instance.

To show that Game′2 is computationally indistinguishable from Game3, we rely on the Bilinear
Subgroup Decision (BSD) assumption introduced by Boneh, Sahai and Waters [8]. Bilinear Subgroup
Decision assumption is implied by the generalized composite 3-party Diffie-Hellman assumption.

The simulator gets the following BSD instance:

(p, q, r, G, GT , e)
R
← GG(λ), n← pqr, gp

R
← Gp, gq

R
← Gq, gr

R
← Gr

Z̄ ← ((n, G, GT , e), gp, gq, gr)

Q← GT,p

The simulator is also randomly given Q′ = Q or Q′ = R where R
R
← GT . The BSD assumption posits

that no poly-time algorithm can distinguish between the above two cases with more than negligible
advantage.

The simulation proceeds as follows.

27

Init. The attacker gives the simulator two identities X∗
0 ,X∗

1 . The challenger then flips the coin β
internally.

Setup. The simulator sets up the parameters as would the real setup algorithm. All the simulator
needs to do this is gp, gq, gr from the assumption.

Query 1. The simulator answers queries as the real authority would. One small difference is that the
simulator chooses exponents from Zn instead of Zp. However, this does not change anything since the
both the simulator and a real authority will raise the elements from Gp to the exponents.

Challenge. The adversary first gives the simulator messages M0,M1. If M0 = M1 then the simulator
simply encrypts the message to the point X∗

β . Otherwise, the simulator creates the challenge ciphertext
of message Mβ to X∗

β as normal with the exception that C ′ is multiplied by Q′.

If Q′ = Q, then the simulator is playing Game′2; otherwise it is playing Game3.

Query 2. Same as Query Phase 1.

Guess. The adversary outputs a guess β′. If β = β′, the simulator guesses that Q′ = Q; otherwise
it guesses that Q′ = R. By our assumption the probability that the adversary guesses β correctly in
Game′2 has a nonnegligible ǫ difference from that of it guessing it correctly in Game3. However, it is
in Game3 if and only if the challenger gave the simulator Q′ = R instead of Q′ = Q. Therefore, the
simulator has advantage ǫ in the Bilinear Subgroup Decision game, implying that the simulator has
an advantage of ǫ in the Composite 3-Party Diffie-Hellman game.

B.6 Indistinguishability of Game3 and Game4

If a polynomial time adversary A has nonnegligible difference ǫ between its advantage in Game3 and
Game4, we can build a simulator B that breaks the C3DH assumption with probability ǫ.

The challenger first creates a 3-Party challenge:

(p, q, r, G, GT , e)
R
← GG(λ), n← pq, gp

R
← Gp, gq

R
← Gq, gr

R
← Gr

R1, R2, R3
R
← Gq

a, b, c
R
← Zn

Z̄ ←
(
(n, G, GT , e), gp, gq, gr, ga

p , gb
p, Γ = gab

p ·R1, Y = gabc
p ·R2

)

Q← gc
p · R3

It then randomly decides whether to give (Z̄, Q′ = Q) or (Z̄, Q′ = R) where R is a random element
in Gpq.

We create the following simulation:

Init. The adversary commits to two points X∗
0 and X∗

1 . The simulator flips a random coin β internally.

Setup. The simulator picks V = gpRv, where Rv is picked at random from Gq. The simulator also
picks from Zn random exponents y, x, x, µi, zi for each i ∈ [ℓ], and lets

W = gy
p · Γ

x, W = Γx

The simulator creates:

∀i ∈ [ℓ] : Ui = (gb
p)

µiRu,i, Hi = (gb
p)

−µiX∗
β,igzi

p Rh,i

where Ru,i and Rh,i’s are random group elements from Gq. The simulator also chooses a random
α ∈ Zn, and computes A = e(gp, V)α.

28

Query 1. Recall that each query σ defines a set of conjunctive queries Cσ on the encrypted point X.
Whenever the adversary asks the simulator to reveal a token for σ, σ must satisfy the condition that
for any function f ∈ Cσ (f is a conjunctive query on X ∈ Z

ℓ
m), f(X∗

0) = f(X∗
1). Henceforth, we use

the terminology σ does not separate the two selected points X∗
0 and X∗

1 to denote the above condition.
We now describe how the simulator responds to the adversary’s “reveal token” queries. The

token can be nondelegated, Type 1 delegated, or Type 2 delegated. Type 1 delegated tokens and
nondelegated tokens should be generated freshly at random, while Type 2 tokens should reflect the
correct relation with their parent tokens. In Section B.4, we gave an algorithm for generating Type 2
tokens. Hence, it suffices to show how the simulator can compute fresh random tokens.

• If the token matches both selected points, the simulator first picks a random τ from Zn, and
lets γ = −xτ , and γ = xτ . Similarly, the simulator picks a random τi ∈ Zn for each i ∈ W(σ),
and lets γi = −xτi, and γi = xτi. Except for the above, the simulator follows the GenToken
algorithm and computes the token. Notice that the token can be computed efficiently, since the
only unknown term involving gab

p cancels out because of the way the simulator chose γ, γ, and
the way the simulator chose γi and γi’s. In particular, consider the term K in the decryption
key component DK. Group the terms in K:

K =

(
wγwγ

)(
gα

∏

j∈S(σ)

(u
σj

j hj)
tj Y

)

In the above, the product term wγwγ can be efficiently computed since all terms involving gab
p

cancel out:
wγwγ = g−xτy

p

Similarly, for all i ∈ W(σ), the following term in the delegation component DLi can be efficiently
computed:

wγiwγi = g−xτiy
p

Clearly, all remaining terms in DK or DL can be efficiently computed, since the simulator knows
all necessary parameters.

• If the token matches neither selected point, there exists coordinate c ∈ S(σ), such that ∆c =
σc −X∗

β,c 6= 0. In this case, the simulator uses the following strategy to compute the decryption

key component DK. The simulator first picks random γ, γ ∈ Zn. It also picks random t̂c ∈ Zn,
and lets

tc = t̂c −
a(γx + γx)

µc∆c

without actually computing tc. Except for the above, the simulator follows the GenToken algo-
rithm to compute the token requested. Notice that the token can be computed efficiently, since
all terms involving the unknown parameter gab

p cancel out. In particular, in the decryption key
components DK, group the terms in K:

K =

(
wγwγ(uσc

c hc)
tc

)(
gα

∏

j∈S(σ),j 6=c

(u
σj

j hj)
tj Y

)

The product term wγwγ(uσc
c hc)

tc can be efficiently computed, since all terms involving the
unknown parameter gab

p cancel out:

wγwγ(uσc
c hc)

tc = gyγ
p (uσc

c hc)
btc(ga

p)−zcΘc

29

where Θc = (γx+γx)
µc∆c

. In addition, we observe that the term Kc = vtcYc can be computed effi-
ciently since the simulator knows ga

p . Clearly, all other terms in DK can be computed efficiently.

To generate the delegation components DL, we can apply the same trick, i.e., by letting

si,c = ŝi,c −
a(γix + γix)

µc∆c

for every i ∈ W(σ). ŝi,c is picked at random from Zn.

Challenge. The adversary submits two messages M0 and M1 to the simulator. The simulator creates
the following ciphertext:

C = Q′, C0 = Q′yY xZ0, Cφ = Y xZφ, ∀i ∈ [ℓ] : Ci = Q′ziZi

In addition, if M0 = M1, the simulator lets C̃ = e(gp, Q
′)α. Otherwise, C̃ is replaced by a random

element from GT . Observe that if Q′ = Q, the ciphertext is identically distributed as in Game3.
Otherwise, if Q′ is a random element from Gpq, the ciphertext is identically distributed as in Game4.

Query 2. Same as the Query 1 stage.

Guess. The adversary outputs a guess β′ of β. By the C3DH assumption, a poly-time adversary
cannot have more than negligible difference in its advantage in Game3 and Game4.

B.7 Indistinguishability of Game4 and Game5

Let E denote the set of indices i where the two committed points are not equal, i.e., X∗
0,i 6= X∗

1,i.

Let Game4,0 := Game4. We define a sequence of games Game4,1,Game4,2, . . . ,Game4,|E|. Let Ẽi ⊆ E

denote the first i indices in E. In Game4,i (1 ≤ i ≤ |E|), the challenger creates ciphertext components

C̃, C, and Cj normally for all j /∈ Ẽi. For all j ∈ Ẽi, the challenger replaces Cj with a random group
element from Gpq. For C0, Cφ, the challenger creates the following ciphertext components like in game
Game4:

C0 = W ρg−πρ′

p Z0, Cφ = W
ρ
gρ′

p Zφ

where ρ′ is a random group element from Zp. Recall that the simulator picks π ∈ Zp at random prior
to the game starts, and π is hidden from the adversary. Whenever the adversary makes a query that
matches both selected points, the simulator picks the exponents for w and w in a correlated way such
that γ = πγ, γi = πγi for all i ∈ W(σ). It is not hard to see that Game4,|E| = Game5.

We now prove Lemma B.5, and show that a poly-time adversary cannot have more than negligible
difference in its advantage in Game4 and Game5. Because of the hybrid argument, it suffices to show
that Game4,d is computationally indistinguishable from Game4,d+1, where 0 ≤ d < |E|.

We prove this by supposing that a poly-time adversary A has more than negligible difference in
its advantage against Game4,d and Game4,d+1. Now we build a simulator B that leverages A to solve
the C3DH problem.

The challenger first creates a 3-Party challenge:

(p, q, r, G, GT , e)
R
← GG(λ), n← pq, gp

R
← Gp, gq

R
← Gq, gr

R
← Gr

R1, R2, R3
R
← Gq

a, b, c
R
← Zn

Z̄ ←
(
(n, G, GT , e), gp, gq, gr, ga

p , gb
p, Γ = gab

p ·R1, Y = gabc
p ·R2

)

Q← gc
p · R3

It then randomly decides whether to give (Z̄, Q′ = Q) or (Z̄, Q′ = R) where R is a random element
in Gpq.

We create the following simulation:

30

Init. The adversary commits two points to the simulator, X∗
0 and X∗

1 . The challenger flips a random
coin β internally.

Setup. Let δ denote the d + 1-th index in E.
The simulator first chooses random (Ru,1, Rh,1), . . . , (Ru,ℓ, Rh,ℓ) ∈ G

3
q and random µ1, y1, . . . , µℓ, yℓ ∈

Zn.
The simulator first publishes the group description and gq, gr, V = gpRv, where Rv is a random

element from subgroup Gr. It picks a random α ∈ Zn and lets A = e(V, gp)
α. It creates

Uδ = gµδ
p Ru,δ, Hδ = g

−µδX∗
β,δ

p ΓyδRh,δ

Next, for all i 6= δ it creates

Ui = gµi
p Ru,i, Hi = g

−µiX∗
β,i

p gyi
p Rh,i

Finally, the simulator picks random Rw, Rw from Gq, and random exponents x, y, y from Zn, and
computes

W = gx
p (gb

p)
yRw, W = (gb

p)
yRw

We observe that the parameters are distributed identically to the real scheme.
The simulator also sets π = −y/y. We observe that π is information theoretically hidden from the

adversary.

Query 1. Whenever the simulator receives a “reveal token” query from the adversary, it needs to
compute a token of the appropriate form and return it to the adversary. The token that the adversary
is requesting can be one of the following three cases: 1) nondelegated, 2) Type 1 delegated, 3) Type
2 delegated. Recall that the simulator generates Type 1 and nondelegated tokens freshly at random.
Meanwhile, Section B.4 provides an algorithm for generating Type 2 tokens. It suffices now to show
how to generate tokens freshly at random.

Consider that the simulator has received a query from the adversary for a nondelegated token or
a Type 1 delegated token σ. Recall that σ should not separate the two committed points X∗

0 and X∗
1 .

Hence, exactly one of the following two cases must be true. Let E denote the set of indices i where
the two committed points are equal, i.e., X∗

0,i 6= X∗
1,i, and E = [ℓ]\E denote the set of indices where

X∗
0 and X∗

1 are not equal.

Case 1. δ /∈ S(σ) ∪W(σ).

Case 2. δ ∈ S(σ)∪W(σ). There must exist i, j ∈ S(σ), such that σi 6= X∗
0 and σj 6= X∗

1 . In other words,
the query σ does not match either of the committed identities.

Case 1. In Case 1, δ /∈ S(σ) ∪ W(σ). The simulator checks if the requested token matches both
selected points. If so, the simulator picks correlated exponents for w and w: γ = πγ, and γi = πγi

for all i ∈ W(σ). (Recall that the simulator sets π = −y/y.) The simulator proceeds to generate
the remaining parts of the token according to the GenToken algorithm. Otherwise, if the requested
token matches neither of the selected points, the simulator simply follows the GenToken algorithm to
generate the token. It is not hard to see that the token can be efficiently computed in this case, since
the simulator knows ui, hi for all i 6= δ, as well as other parameters needed.
Case 2. This is the more complicated case, since the simulator does not know hδ which contains the
term gab

p . Also, in this case, the token queried does not match either of the selected points. Therefore,
the simulator will leverage w and w to cancel out the unknown parameters in hδ .

We first describe how to generate the decryption key component DK. If δ /∈ S(σ), then it is trivial
for the simulator to generate DK, since the unknown parameter hδ does not appear in DK, and the

31

simulator knows all parameters required. If δ ∈ S(σ) the simulator picks tδ, γ
′ ∈ Zn at random, and

lets γ be the following without actually computing it.

γ = γ′ − atδyδ/y

Now the simulator follows the GenToken algorithm to generate remaining parts of the decryption
key DK. DK can be efficiently computed, even though the simulator does not know gab

p , as all terms

involving gab
p cancel out in DK. In particular, consider the term K in DK. Group the terms in K:

K =

(
wγ(uσδ

δ hδ)
tδ

)(
gα

∏

j∈S(σ),j 6=δ

(u
σj

j hj)
tjY

)

The product term wγ(uσδ

δ hδ)
tδ can be efficiently computed since all terms involving gab

p cancel out:

wγ(uσδ

δ hδ)
tδ = (gb

p)
yγ′

gµδ∆δtδ
p

where ∆δ = σδ−X∗
β,δ. Meanwhile, the term Kφ = vγYφ can be efficiently computed since the simulator

knows ga
p . It is not hard to see that all remaining terms in DK can be efficiently computed.

We show how to generate the delegation components. The simulator can use exactly the same
strategy to generate DL. Basically, for all i ∈ W(σ), the simulator picks si,δ, γ

′
i ∈ Zn at random, and

lets γi be the following without actually computing it:

γi = γ′
i − asi,δyδ/y

In this way, depending on whether δ ∈ S(σ) or δ ∈ W(σ) the product wγi(uσδ

δ hδ)
si,δ or wγih

si,δ

δ

can be efficiently computed, since terms involving gab
p cancel out.

Challenge. The adversary submits two messages M0 and M1. Let E denote the set of indices i such
that X∗

0,i 6= X∗
1,i. Let Ẽd denote the first d indices in E. The simulator picks random P ∈ Gpq,

Z0, Zφ ∈ Gq, and Zi ∈ Gq for all i ∈ [ℓ]. The simulator creates the following ciphertext:

C = Q′, C0 = Q′xP yZ0, Cφ = P yZφ, Cδ = Y yδZδ, ∀i 6= δ and i /∈ Ẽd : Ci = Q′yiZi

For all i ∈ Ẽd, the simulator picks a random element in Gpq for Ci. In addition, if M0 = M1, the

simulator computes C̃ = e(gp, Q
′)α; otherwise, the simulator replaces C̃ with a random element from

GT . Notice that if Q′ = Q, then the above simulation is identically distributed as Game4,d. Otherwise,
if Q′ = R, the simulation is identically distributed as Game4,d+1.

Query 2. Same as phase Query 1.

Guess. The adversary outputs a guess β′ of β. If the adversary guesses correctly, i.e., β′ = β, the
simulator guesses that Q′ = Q in the C3DH instance. Otherwise, the simulator guesses that Q′ = R. It
is not hard to see that any advantage of the adversary in distinguishing β translates to the simulator’s
advantage in solving the C3DH problem.

C Background on Composite Order Bilinear Groups

Let GG be an algorithm called a group generator. Algorithm GG takes as input a security parameter
λ ∈ Z

>0, a number k ∈ Z
>0, and outputs a tuple (p, q, r1, r2, . . . , rk, G, GT , e) where p, q, r1, r2, . . . , rk

are k + 2 distinct primes, G and GT are two cyclic groups of order n = pq
∏k

i=1 ri, and e is a function
e : G

2 → GT satisfying the following properties:

• (Bilinear) ∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab.

32

• (Nondegenerate) ∃g ∈ G such that e(g, g) has order n in GT .

We assume that the group operations in G and GT as well as the bilinear map e are all computable
in time polynomial in λ. We also assume that the description of G and GT includes generators of G

and GT respectively.
We use the notation Gp, Gq, Gr1

, . . . , Grk
to denote the respective subgroups of order p, q, r1, . . . , rk

of G. Similarly, we use the notation GT,p, GT,q, GT,r1
, . . . , GT,rk

to denote the respective subgroups of
order p, q, r1, . . . , rk of GT .

D dHVE Full Security

We formally define the security of dHVE through the following security game between a challenger
and an adversary.

• Setup. The challenger runs the Setup algorithm, and gives the adversary the public key PK.

• Query 1. The adversary adaptively makes a polynomial number of “create token”, “create
delegated token”, or “reveal token” queries. The challenger answers these queries accordingly.

• Challenge. The adversary outputs two pairs (M0,X0), (M1,X1) ∈ {0, 1}
∗ × Σℓ subject to the

following constraints:

For any token σ revealed to the adversary in the Query 1 stage, let Cσ denote the set of
conjunctive queries corresponding to this token.

1. For all f ∈ Cσ, f(X0) = f(X1).

2. If ∃f ∈ Cσ, f(X0) = f(X1) = 1, then M0 = M1.

The challenger flips a random coin b and returns an encryption of (Mb,Xb) to the adversary.

• Query 2. Repeat the Query 1 stage. All tokens revealed in this stage should satisfy the same
condition as above.

• Guess. The adversary outputs a guess b′ of b.

As before, the advantage of an adversary A in the above game is defined to be AdvA = |Pr[b =
b′] − 1/2|. We say that a dHVE construction is secure if for all polynomial time adversaries, its
advantage in the above game is a negligible function of λ.

E Anonymous Hierarchical Identity-Based Encryption with Short Private Keys

In Section 2.2, we propose a new and complete security definition for delegation in these (anonymous)
IBE systems. By contrast, previously, researchers have used an under-specified security game, where
the adversary does not get to specify how each queried token is derived. We now show one advantage
of being able to capture such nuances in our security definition, by giving an Anonymous Hierar-
chical Identity-Based Encryption (AHIBE) construction with shorter private keys than the original
construction by Boyen and Waters [10].

To achieve this, we rely on the same technique that we use for our dHVE construction: we multiply
the private keys by random group elements in the third subgroup Gr, so that the private keys are
computationally indistinguishable from being picked freshly at random.

For consistency, we build our AHIBE scheme based on composite bilinear groups and the C3DH
assumption, rather than the Decisional Linear assumption adopted by the original BW construction.
One can easily build the scheme using the Decisional Linear assumption as well.

In comparison, the original BW construction has O(D2) private key size and our construction has
O(D) private key size, where D denotes the depth of the hierarchy. Meanwhile, we preserve all other
costs asymptotically, including ciphertext size, encryption cost, and decryption cost.

33

E.1 Construction

Setup(1λ,D): The setup algorithm takes as input a security parameter aλ, the maximum depth
D ∈ N, and outputs public parameters PK and the corresponding master secret key MSK. The
setup algorithm first chooses random large primes p, q, r > m and creates a bilinear group G

of composite order n = pqr, as specified in Section 4. Next, it picks a random g, v ∈ Gp, gq ∈
Gq, gr ∈ Gr, a random exponent α ∈ Zp, and random elements

∀n ∈ [0,D + 1],∀ℓ ∈ [0,D] : un,ℓ
R
← Gp

It keeps all the above as the master secret key MSK. The Setup algorithm then chooses the
following blinding factors in Gq:

Rv, ∀n ∈ [0,D + 1],∀ℓ ∈ [0,D] : Rn,ℓ
R
← Gq

The algorithm now publishes the following as the public key PK.

gq, gr, V = vRv, A = e(g, v)α, ∀n ∈ [0,D + 1],∀ℓ ∈ [0,D] : Un,ℓ = un,ℓRn,ℓ

Extract(PK,MSK,I): The Extract algorithm takes as input the public key PK, the master secret key
MSK, and an ID tuple I = (I0, I1, . . . , IL) ∈ (Z×

p)1+L, where L ∈ [D], and by convention, I0 = 1.
The algorithm generates a private key corresponding to the identity I.

• Pick random exponents r0, r1, . . . , r1+D from Zp. Pick random blinding factors Y, Y0, Y1, . . . , Y1+D

from Gr, and random Y ′
1+L, Y ′

2+L, . . . , Y ′
D from Gr.

• Compute the decryption key portion of the private key:

DK =

(
K = gα

1+D∏

n=0

L∏

ℓ=0

(uIn

n,ℓ)
rn · Y, ∀n ∈ [0, 1 + D] : Kn = vrnYn

)

• Compute the following delegation components of the decryption key:

DL =

(
∀ℓ ∈ [1 + L,D] : Jℓ =

1+D∏

n=0

urn

n,ℓ · Y
′
ℓ

)

Derive(PK,PvkI|L−1,I) The Derive algorithm takes as input the public key PK, and derives a private
key for I = (I0, I1, . . . , IL) from a parent key for I|L− 1 := (I0, I1, . . . , IL−1).

• First, express the parent key using the same notation as before: PvkI|L−1 = (DK,DL),
where DK = (K,K0,K1, . . . ,K1+D), and DL = (JL, J1+L, . . . , JD).

• Next, pick a random exponent τ ∈ Zn, and random blinding factors Y, Y0, . . . , Y1+D, and
Y ′

1+L, . . . , Y ′
D from Gr.

• Compute the decryption key portion of the child key:

DK′ =
(
K ′ = (K · JIL

L)τY, ∀n ∈ [0, 1 + D] : K ′
n = Kτ

nYn

)

• Compute the delegation components of the child key:

DL′ =
(
∀ℓ ∈ [1 + L,D] : J ′

ℓ = Jτ
ℓ Y ′

ℓ

)

34

Encrypt(PK,I,M) The Encrypt algorithm takes a public key PK, and encrypts a message M to an
identity I = (I0, I1, . . . , IL). The algorithm proceeds as follows:

• Pick a random exponent s ∈ Zn. Pick random blinding factors Z,Z0, Z1, . . . , Z1+D from
Gq.

• Compute the following ciphertext:

CT =

(
C̃ = MAs, C = V sZ, ∀n ∈ [0, 1 + D] : Cn = (

L∏

ℓ=0

U Iℓ

n,ℓ)
sZn

)

Decrypt(PK,PvkI ,CT) The Decrypt algorithm takes a public key PK, a private key PvkI , and decrypts
a ciphertext CT. Using the same notation for the ciphertext and the private key as before, decrypt
the message:

M̂←
C̃ ·
∏1+D

n=0 e(Cn,Kn)

e(C,K)

E.2 Security of construction

Theorem E.1. The above-defined A-HIBE construction is internally consistent. In addition, it is
IND-sID-CPA and ANON-sID-CPA secure under the cBDH and C3DH assumptions in the bilinear
group G.

See the original BW paper [10] for detailed definitions of IND-sID-CPA and ANON-sID-CPA
security.

The proof of the consistency is straightforward. Proof of security can be done in the following
steps:

• As we multiply all elements of the private key with a random group element from the third sub-
group Gr, we can show that private keys generated by the Derive algorithm are computationally
indistinguishable from being picked freshly at random.

• Show that if private keys were really generated freshly at random rather than by calling the
Derive algorithm, the scheme would be IND-sID-CPA and ANON-sID-CPA secure. This part of
the proof is done in a manner similar to that of the BW construction [10]. The only exception is
that we now replace the the Decisional Linear assumption by the C3DH assumption. However,
the gist of the proof remains unchanged.

We omit the complete proof in this paper, since it is very similar to the proof of our dHVE
construction.

35

