Authentication in the Clouds: A Framework and its
Application to Mobile Users

Richard Chow
PARC
rchow@parc.com

Jesus Molina
Fujitsu Labs of America

Markus Jakobsson
FatSkunk
markus@fatskunk.com

Yuan Niu
UC Davis

jesus.molina@us.fujitsu.com Yyuan.niu@gmail.com

Ryusuke Masuoka
Fujitsu Labs of America

ryusuke.masuoka@us.fujitsu.com

Elaine Shi
~ PARC
eshi@parc.com

Zhexuan Song
Fujitsu Labs of America

zhexuan.song@us.fujitsu.com

ABSTRACT

Cloud computing is a natural fit for mobile security. Typi-
cal handsets have input constraints and practical computa-
tional and power limitations, which must be respected by
mobile security technologies in order to be effective. We de-
scribe how cloud computing can address these issues. Our
approach is based on a flexible framework for supporting
authentication decisions we call TrustCube (to manage the
authentication infrastructure) and on a behavioral authen-
tication approach referred to as implicit authentication (to
translate user behavior into authentication scores). The
combination results in a new authentication paradigm for
users of mobile technologies, one where an appropriate bal-
ance between usability and trust can be managed through
flexible policies and dynamic tuning.

Categoriesand Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection - Authentication

General Terms
Algorithms, Security

Keywords

cloud computing, authentication, mobile computing

1. INTRODUCTION

As online access to services becomes ubiquitous and the
cloud access model gains momentum, authentication is in-
creasingly becoming a focal point for security professionals.

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CCSW 10, October 8, 2010, Chicago, lllinois, USA.

Copyright 2010 ACM 978-1-4503-0089-6/10/10 ...$10.00.

With bank accounts, health records, corporate intellectual
property and politically sensitive information being just a
few clicks away — no matter where in the world you are —
it is natural to worry about the identity of those wishing
to gain access. At the same time, as penetration rates of
cell phones approach (and oftentimes surpass) 100% in in-
dustrialized nations [5], more and more of these accesses are
made from handsets. This introduces security vulnerabili-
ties and complicates matters, given that handsets abide by
entirely different usability, computational, and power limi-
tations than traditional computers. For instance, it is often
not practical to require security-related computation that
notably limits battery life. Antivirus is the usual example of
a computationally intensive security-related service [16], but
we argue that usable and strong authentication on mobile
devices have needs that are equally computationally inten-
sive. Hence, one is led naturally to cloud computing, which
is eminently suitable for addressing problems related to lim-
ited client resources, as it offloads computation from clients
and offers dynamic provisioning of compute resources.

We describe an independent, policy-based cloud authen-
tication platform using open standards, and supporting the
integration of various authentication methods. We call this
platform TrustCube [18]. TrustCube addresses the authen-
tication problem in a simple, yet flexible manner — whether
the client device is a mobile phone or not. Given the high
elasticity of requests, the complex nature of authentication,
and the need to consider varied sources of authentication
data (e.g., device integrity reports, user credentials, etc.),
there are distinct benefits associated with using policy-based
authentication. Namely, doing so permits the use of fine-
grained and user-specific security policies that can be in-
stantly updated to address changing needs. Furthermore,
TrustCube assumes a federated authentication framework,
such as OpenID [6]. This implies a star-shaped authenti-
cation topology, for example, one where the authentication
service is itself in the cloud and supports a set of other cloud
services. Authentication services are particularly well-suited
for a star-shaped topology, as it is a specialized service that
is difficult to secure. A star-shaped topology also has pri-
vacy benefits, as only the center of the star needs to collect
user-specific data. There are potentially heavy loads on the
authentication service in a star-shaped topology due to its

central role in the process, but this can be well addressed
through the elasticity of cloud computing, as multiple in-
stances of the authentication service can be deployed within
the cloud as needed.

Besides computational power and battery consumption,
there are other important differences between the traditional
computing framework and its mobile counterpart that af-
fect bottom-line security. In particular, mobile devices are
constrained in terms of text input and are more prone to
theft than traditional computers. The input constraints
make it difficult for users to input complex passwords (e.g.,
see [13]), often leading to the use of password managers,
short passwords, and simple PINs. The higher risk for theft,
in turn, makes these practices increasingly dangerous, as
they threaten to put “open” devices in the hands of crimi-
nals.

We do not believe public awareness of the problem can
turn matters around, but believe in the need for a new ap-
proach to authentication of users. Extending the traditional
authentication paradigm beyond “what you have — what you
know — what you are”, we suggest that “what you do” is a
practical way to control access. We refer to this as implicit
authentication [13, 12]. Implicit authentication allows us to
identify users by their habits, as opposed to their belong-
ings, memorized data, and biometrics. Products exist in
this general area, e.g., [7, 3], but they have generally not
been focused on mobile users and are based on data such
as IP addresses and device profiles. We have built an im-
plicit authentication system based on mobile data: calling
patterns, SMS activity, website accesses, and location. The
paradigm of authentication based on implicitly observed be-
havior helps us — among other things — to protect against
unwanted access from stolen handsets.

‘We note that much of the data that is needed to make such
mobile authentication decisions — such as calling patterns
and crude location information — is automatically available
to carriers. Other useful contextual data, such as calen-
dar information, is hosted by a small set of cloud service
providers. This also makes implicit authentication natural
to use in the context of cloud-based authentication.

In this paper, we do not describe the implicit authenti-
cation algorithms and models explicitly, which is described
in [17]. Instead, we concentrate here on a description of
the top-level system and its application to the cloud; the
intention is that any implicit authentication system can be
plugged into our framework. However, in the Case Study of
Section 4, we present some data from the particular implicit
authentication system we have implemented, in order to give
an indication of the effectiveness of the approach. In actual
deployment, TrustCube would likely use other sorts of au-
thentication modules in addition to implicit authentication,
increasing the overall effectiveness of the system.

The use of implicit authentication implies a policy-based
authentication framework. Implicit authentication is a sta-
tistical test whose output is not binary, and the thresholds
and amount of uncertainty allowed depend on the partic-
ular application. Also, because false positives cannot be
eliminated, implicit authentication works best with a well-
defined fallback authentication technique. The use of im-
plicit authentication also implies a star-shaped authentica-
tion topology, as there is a need to limit the scattering of the
data, which is potentially very privacy-invasive. Thus, the
use of implicit authentication naturally implies an authenti-

cation framework such as TrustCube, which is policy-based
and designed for star-shaped authentication technologies.

Hence, we argue that the combination of TrustCube and
implicit authentication is a natural solution to better control
fraud risks while minimizing user frustration and handset
computation and power consumption. In this paper, we de-
scribe how this can be done and report on a proof-of-concept
implementation.

Outline. We begin by motivating the use of TrustCube
and implicit authentication, supported by four different use
cases and the adversarial behavior we consider (Section 2).
We then describe the high-level architecture of our solution
(Section 3). This is followed by an overview of a concrete
implementation of our solution and the results of an exper-
iment we used to assess its security (Section 4).

2. USECASESAND ADVERSARIAL MODEL

There exist many situations in which our proposed au-
thentication approach potentially improves security and us-
ability. We will briefly describe four scenarios that highlight
various use cases.

In the first scenario, we consider a consumer who per-
forms a credit card transaction at a point-of-sale (PoS). The
authorization request is redirected to the credit card clear-
ing organization which inquires about the recent behavior
of the consumer, as observed by her phone. If the device
appears to be in use (i.e., the accelerometer sensor is acti-
vated), and its recent location traces are inconsistent with
the PoS location, then the transaction may be rejected or
require further corroboration, depending on policy. On the
other hand, if everything is consistent with the legitimate
user making the purchase, the clearing house may signal to
the PoS that no signature is needed — resulting in a fast-
track checkout. (Note that the consumer did not interact
with her phone as part of the transaction, but the phone’s
recent history was used.)

In the second scenario, a bank customer uses his phone to
check his bank account, using his regular password. If the
recent history of the device is inconsistent with the user’s
habits, then this flags the login as a potentially high-risk
event. The bank can use this information in its authenti-
cation policy to determine how to process the request, po-
tentially involving another form of authentication. Thus,
implicit authentication is not used as a replacement of reg-
ular authentication in this setting, but rather, as a second
factor.

In the third scenario, a handheld medical device is pro-
tected by observing its use in the context of location, sched-
ules, and more. This allows automated authentication of
medical staff, protecting access to privacy-sensitive medical
data in a context where stressful working conditions would
otherwise make account sharing tempting.

In the fourth scenario, an enterprise employee uses his
phone to access an internal corporate portal. Depending on
the sensitivity of the portal, the authentication policy may
take various combinations of data, such as passwords, hard-
ware tokens like SecurID [8], regular (HTTP) cookies, cache
cookies [14], device configuration data [9], and contextual
data such as previous accesses by the same employee. The
policy may also require evaluation of the system integrity of
the phone, requiring data ranging from the versions of soft-
ware that are installed to a Trusted Computing-style attes-
tation from a root of trust [10]. Implicit authentication may

not be applicable or available. Here, we consider authen-
tication to a service provider that uses TrustCube to guide
access decisions. Any of this data could potentially be forged
by an attacker. At the same time, any piece of data may be
incorrect or missing from a legitimate transaction. The use of
a flexible authentication engine with risk-informed weights
allows a balance to be struck between security and accessi-
bility. It also benefits from knowledge of past authentication
attempts; therefore, if the authentication server is used by
multiple service providers, each one of these benefit from
the improved precision offered by one unified authentication
server.

In all of these settings, the infrastructure for deriving an
authentication score for a given user may be independent
of the context where the authentication decision is needed.
For instance, the user and his service providers might use
a cloud authentication service, supported by TrustCube or
a similar authentication framework, where the authentica-
tion service would poll data sources at frequent intervals (or
even other authentication services). It would use the ob-
tained information to build and update user models, and to
make policy-driven authentication decisions. The underly-
ing policies can be chosen differently for different use cases,
for different service providers, and for different users, al-
lowing for a fine-grained tuning of the policies to varying
authentication needs.

Adversary and Our Goals. In the context of these
use cases, we consider an adversary who wishes to obtain
access to a resource based on theft — of a client device, of
an auxiliary item (e.g., a credit card), or of user credentials
(e.g., a password). In detail, we consider these cases:

e Theft of client device. The adversary gains physical
access to the client device — e.g., handset — and wishes
to use this in a way that benefits him. He may wish
to place phone calls, perform payments from accounts
associated with the device, access personal data, or
simply become the new user of the client device.

e Theft of auxiliary item. The adversary attempts to
use a resource associated with a given client device,
without necessarily having control of this device. As
examples, the adversary wish to perform a credit card
transaction using a stolen credit card or gain access to
a building using a employee identity card.

e Theft of user credentials. The adversary has stolen
user credentials corresponding to a given client device
— e.g., using phishing, malware or shoulder surfing —
and wishes to gain access to a resource associated with
these credentials and with the client device.

In all of these theft-based scenarios, the goal of the authen-
tication infrastructure is to detect the inconsistency that
arises from the adversary’s access requests, and in the con-
text of the information that TrustCube obtains from the
data aggregators and the client device in question.

3. HIGH-LEVEL ARCHITECTURE
3.1 Authentication Flows

We consider an architecture with the following types of
participants: client devices, data aggregators, an authentica-
tion engine, and authentication consumers. The client de-
vices generate observable context and actions as part of their

Query Authentication
Data Aggregator .
Engine
xe
(\i\@
N Exchange
Push Pt e xchang
e Secret
-,
P
4
b =

Authentication
Consumer

Client Device
Request Service

Figure 1: Participants in the general architecture
and the relationships among them. The Client De-
vice pushes context and activity data to a Data
Aggregator; the Authentication Engine queries the
Data Aggregator for individual device reports; the
Client Device requests a service from the Authen-
tication Consumer; the Client Device authenticates
itself through the Authentication Engine; and the
Authentication Engine exchanges a secret with Au-
thentication Consumer during authentication (in or-
der to later verify authentication results). Arrows
indicate the direction of data flow, and a dashed line
indicates an indirect connection (e.g., using browser
redirection).

regular use. The data aggregators collect data on context
and actions from client devices, and from auxiliary sources
(such as schedules provided by third parties). The authenti-
cation engine obtains data from data aggregators, and may
request data directly from client devices. It makes authen-
tication decisions based on collected data and authentica-
tion policies. Authentication consumers provide policies to
the authentication engine based on end user access requests
(e.g., a webpage access request or a payment request). Fi-
nally, the authentication consumer responds to a client’s re-
quest based on the authentication result it receives. Figure
1 demonstrates the relationship between participants.

The authentication flow is as follows: Before authentica-
tion starts, the authentication consumer lists the access re-
quests (e.g., a webpage access request or a payment request)
that require authentication. For each request, the authen-
tication consumer will register a policy with the authenti-
cation engine. The policy includes at least three parts: the
access request, the information to be collected from client
devices or data aggregator for this access request, and a
rule to generate the authentication result. During normal
operation, client devices periodically report to the data ag-
gregator. This data will be used to track user behavior and
support authentication requests.

The authentication flow starts when an access request is
received by the authentication consumer. (This request may
have been initiated by a client device that the system col-
lects data from, or by another device, such as a credit card
reader.) Upon receiving the request, the authentication con-
sumer redirects the request to the authentication engine,
along with request details. The authentication engine re-
trieves the policy for the access request, extracts the infor-
mation that needs to be collected, and sends an inquiry to
the client device and/or data aggregator. The client de-
vice and/or data aggregator receives the inquiry, generates
a report, and sends it back to the authentication engine.

The authentication engine then applies the authentication
rule in the policy and determines the authentication result
(whether or not the client device is authenticated for the
access request) and sends this back to the authentication
consumer. Based on the authentication result, the authenti-
cation consumer will either provide the service (e.g., return
the webpage content or accept the payment request) or re-
ject the request.

3.2 DataAnalysisand Processing

Both pull and push methods are adopted by client devices
to provide data. The push path is from client devices to data
aggregators. The main purpose is to constantly report the
context and behavior of client devices. The push operation
allows the client device to clear storage space by clearing
its local cache after reporting. The pull path is a request
from the authentication engine to client devices and data
aggregators to send data back to the authentication engine.

Data aggregators might mine the data received to derive a
data and behavioral model for the client device. For exam-
ple, in the case of implicit authentication, the authentication
result may depend on whether the current user is following
her regular patterns.

In general, we envision the following framework for the
machine learning algorithm used by a data aggregator, see
Figure 2. From a user’s past behavior, we first learn a user
model which characterizes an individual’s behavioral pat-
terns. Given a user model and some recently observed be-
havior, we can compute the probability that the device is
in the hands of the legitimate user. We use this probability
as an authentication score. The score is used to make an
authentication decision: typically, we can use a threshold to
decide whether to accept or reject the user, and the thresh-
old can vary for different applications, depending on how
security sensitive the application is.

Past Recent
Behavior Behavior
Learning User
Algorithm [~ _ Model Score

Figure 2: Learning a User Model. The learning al-
gorithm uses past behavior to create a user model.
The user model uses recent behavior to generate a
score.

4. IMPLEMENTATION APPROACH

We implemented the authentication framework described
above. We call it TrustCube or Trust® because, unlike tradi-
tional user-based authentication, TrustCube supports a wide
range of policies, which may include reports on the user, the
platform, and the environment of a client device (3 factors).
The general architecture is given in Figure 3.

We developed our client side agent on Android [2], an
open-source mobile operating system. One of the advantages
of Android is the ability to run a background monitoring
service, critical for the sort of data collection performed by
implicit authentication. The client side agent collects two
kinds of data.

I1A Server Integrated Authentication Service

’7Policy Engine

TNC Server — Database

|A Engine

Web Server

Figure 3: The TrustCube architecture, one imple-
mentation of the authentication framework of Fig-
ure 1. The authentication between the smart phone
and integrated authentication server uses the TNC
(Trusted Network Connect) protocol. Service re-
quests are redirected to the integrated authentica-
tion service using the OpenlID protocol.

First, it collects a user’s context and activities, and re-
ports these to the data aggregator regularly (in our system,
the data aggregator is the implicit authentication server, or
IA server). In some deployments, this type of data would
already be collected by the carrier, allowing us to avoid ex-
plicitly exporting it from client devices. The collected data
consists of phone call and SMS history, browser history, net-
work information, and location. The data is stored locally
until it is successfully reported to the data aggregator. To
protect privacy, all data collected (except GPS location) are
hashed with a random key at the time of collection. This key
is device-specific, generated and stored on the device, and
never exported. The system cannot infer the actual data
from the hashed data, nor can it test a piece of data to see
if it agrees with the original data. In this way, the system
balances security and privacy: unusual patterns can still be
detected while the user keeps private the phone numbers
called and the web sites visited.

Second, during authentication, it collects information about
the phone and reports this data to the authentication engine
(in our system, the authentication engine is the integrated
authentication server). The information it collects is based
on the policy provided by the authentication engine, and
may include, for example, the applications that are running
and installed and the firmware version.

The IA server exposes two web service interfaces: report
and query. The report interface allows client side agents to
report context and activity information routinely; the query
interface allows other entities (e.g., the authentication en-
gine) to get a score for a device which indicates how normal
the behavior of the device is at the moment. The score de-
pends on current data and a machine-learned model of the
device’s past behavior, based on a sliding window of data
collected in the past. The window does not extend too far
in the past, so that recent behavior is more important than
behavior in the far past.

The integrated authentication service is the authentica-
tion engine. The service is developed in Java and deployed

as an Amazon EC2 [1] instance and encapsulated as an AMI
(Amazon Machine Image). The service exposes two inter-
faces: a web-based user interface for authentication con-
sumers to define and maintain policies and a web service
interface to authenticate client devices. The authentication
service scales effortlessly because it itself is a cloud service.

Policies can be easily uploaded, modified, and monitored
using the integrated authentication service’s user interface.
Policies can also be based on the platform, enabling mobile
and desktop clients to share the same authentication engine
with different policies. The policy supports rules of the fol-
lowing form: (1) integrity check rules constructed using a set
of conditions describing the platform and environment and
OR and AND operators; (2) thresholds for the implicit au-
thentication score; and (3) specification of an alternate the
user authentication method, picked from a set of available
authenticators such as passwords, PIN pads and biometrics,
in case the IA score is below the threshold. The integrity
check rule includes items such as the minimum OS version,
acceptable network settings, and a white/black list of in-
stalled /running applications. For example, a policy might
look like: (1) the device should run Android 2.1 update 1 or
above AND the WiFi SSID should be “hospital” AND only
default and hospital applications can be installed; (2) the
minumum IA score to view medical data is 800; (3) if the IA
score is below the minimum, the user must use a PIN pad
to further authenticate.

Finally, the authentication consumer is a web server. We
deployed a sample web server that hosts some sensitive med-
ical data. In order to access the site, a user must authenti-
cate using the integrated authentication service. To model
a web-based service hosted in the cloud, we developed the
web server in Google’s AppEngine [4].

The protocol to redirect an access request between a web
server and the integrated authentication service is OpenlD,
an international standard for federated authentication al-
lowing one ID provider to serve multiple ID consumers. We
observe that this protocol supports the separation of the
authentication component from a web-based service and it
fits our general architecture well. The OpenlID protocol also
includes methods for a web server and an integrated authen-
tication service to exchange a secret before authentication
using the Diffie-Hellman key exchange method. Later, the
web server may use the shared secret to verify authentica-
tion results. Other standards for federated identity, such as
SAML SSO, can be easily supported in the future.

Since information is transferred through open networks in
TrustCube, we adopted the TNC (Trusted Network Con-
nect) [11] protocol for trusted reporting. TNC, a TCG

(Trusted Computing Group) protocol, addresses and attempts

to provide network access control that meets security re-
quirements through non-proprietary standards. The TNC
client is implemented in the client side agent and the inte-
grated authentication service acts as a TNC server.

Case Study: Device Theft

We now examine the performance of our proposed system.
First, we note that success rates depend very much on the
type of adversarial behavior considered. For example, one
may expect the detection rates to be much greater in a con-
text where we wish to detect the theft of credit cards than
one where we aim to detect the theft of a handset. This
is so since credit cards — and credit card numbers — are

Bl all features

<— phone only

t{ P> browser only
9@ smsonly

[| =< gps only

IS
o

N
=)

w
o

w
=1

IN]
[l

before detection (90 percentile)

of times an adversary used the device
N
=)

10 30 50 70 90 110 130 150 170
of times the legitimate user used the device before failed authentication

Figure 4: False positive and false negative rates for
different features separately and combined. The x-
axis shows the number of successful implicit authen-
tications before a failed authentication for a legiti-
mate user, while the y-axis shows the number of
times an adversary can access resources before being
locked out with 90% probability. For example, to in-
terpret one point on the graph, a legitimate user can
use the device around 150 times before a failed au-
thentication, while an adversary will be locked out
after using the device 10 or fewer times with 90%
probability.

typically stolen separately of the associated mobile devices.
Therefore, there will be a very likely discrepancy between
the location of the credit card (as observed by the point of
sale or IP address) and the location of the handset. Loca-
tion discrepancy is one of the indicators of credit card theft,
along with indications that the registered handset is used
normally — i.e., that it is not forgotten at home. In contrast,
if we want to identify device theft, we need to rely on the
observed behavior alone. We do not have the benefit of any
simple rules, as we do for the detection of credit card theft.

In the following, we take a brief look at our expected suc-
cess rates in identifying the theft of handsets. We emphasize
that the ability to detect this sort of theft has to be balanced
against the risk of failing legitimate users — the usual bal-
ancing act between false positives and false negatives. Here,
a false negative means that a legitimate user will fail the
implicit authentication, and therefore, will have to authen-
ticate in a traditional manner. We do not aim for perfect
security, as that would mean a return to user inconvenience.
Instead, we aim to lock out attackers as soon as possible,
and keep them locked out.

We consider the results of an experiment we performed [15],
in which we recorded the activities of a collection of users
over a two-week period and trained our detector on this
data. We then created adversarial attempts, and attempted
to detect these. To model an adversarial attempt, we pasted
in the activity trace of one user with the activity trace of
another user, with care taken to avoid peculiarities such as
sudden jumps in terms of location. By varying our accep-
tance thresholds, we obtain tradeoffs between the number of
times between failed legitimate authentication attempts and
failed adversarial authentication attempts. These are shown
in Figure 4. We compare these rates to those obtained from

| = W
@@ Lockout

of times an adversary used the device
before detection (70 percentile)

5

3

10 30 50 70 90 110 130 150 170
of times the legitimate user used the device before failed authentication

Figure 5: Tradeoffs between false positives and false
negatives for a simple policy that locks a device af-
ter a set period of inactivity. The x-axis shows the
number of successful implicit authentications before
a failed authentication for a legitimate user, while
the y-axis shows the number of times an adversary
can access resources before being locked out with
70% probability.

a simple timed lock-out policy in Figure 5. We note that
these are preliminary results obtained from an experiment
with approximately 50 users, observed over a period of two
weeks. We expect that the error rates will be better for
large-scale deployments that collect behavioral data for ex-
tended periods of time.

5. CONCLUSION

Cloud computing has brought new challenges and oppor-
tunities for authentication. There is increasing demand for
usable authentication to access services and data for both
enterprises and consumers. At the same time, the cloud
provides abilities such as centralized analysis and monitor-
ing, and potential for new and more accurate authentication
techniques.

Simultaneously, there is another trend that is important
to understand in the context of cloud computing and authen-
tication: the shift in platforms from traditional PCs toward
smart phones and other mobile platforms. Usage patterns
of mobile platforms are very different from PCs, and are as-
sociated with richer behavioral data, for example location
and call logs. On the other hand, user authentication can
be more intrusive while on the go, making privacy more of
a concern. When mobile users access the cloud, their be-
havioral data is starting to be used for applications such as
advertising, using the cloud’s data-aggregation ability. One
of the themes of the paper is that this data can similarly
be used for new kinds of authentication. We refer in par-
ticular to implicit authentication, which uses a user’s past
behavioral data to authenticate, and which is particularly
well-suited for mobile devices.

We have described a concrete cloud authentication system
that we have built based on these ideas. This system has
at its core an authentication service — dubbed TrustCube
— that itself resides in the cloud. Any cloud-based service
can re-direct authentication to the authentication service

via a federated authentication framework such as OpenID.
Our system has the ability to accept various authentication
methods in a policy-driven manner, from TCG-style device
integrity measurements to passwords. The system is flexi-
ble enough to support newer, cloud-oriented authentication
techniques. In particular, we have integrated the system
with implicit authentication, and we have described several
simple end-to-end use cases with our authentication frame-
work and implicit authentication.

6. REFERENCES

[1] Amazon Elastic Compute Cloud (Amazon EC2). On
the Web at http://aws.amazon.com/ec2/.

[2] Android. On the Web at http://www.android.com/.

[3] Entrust IdentityGuard. On the Web at
http://www.entrust.com/strong-authentication/
identityguard/index.htm.

[4] Google App Engine. On the Web at
http://code.google.com/appengine.

[5] List of countries by number of mobile phones in use.
On the Web at
http://en.wikipedia.org/wiki/List_of_
countries_by_number_of_mobile_phones_in_use.

[6] OpenID. On the Web at http://openid.net.

[7] RSA Adaptive Authentication. On the Web at
http://www.rsa.com/node.aspx?id=3018.

[8] SecurID. On the Web at
http://en.wikipedia.org/wiki/SecurID.

[9] The 41st Parameter. On the Web at
http://wuw.thedlst.com/.

[10] Trusted Computing Group. On the Web at
http://wuw.trustedcomputinggroup.org/.

[11] Trusted Network Connect. On the Web at
http://wuw.trustedcomputinggroup.org/
developers/trusted_network_connect/.

[12] R. Greenstadt and J. Beal. Cognitive security for
personal devices. In The First ACM Workshop on
AlSec, 2008.

[13] M. Jakobsson, E. Shi, P. Golle, and R. Chow. Implicit
Authentication for Mobile Devices. In HotSec ’09:
Proceedings of the 4th USENIX Workshop on Hot
Topics in Security, 2009.

[14] A. Juels, M. Jakobsson, and T. N. Jagatic. Cache
cookies for browser authentication. In Proceedings of
the 2006 IEEE Symposium on Security and Privacy,
2006.

[15] Y. Niu, E. Shi, R. Chow, P. Golle, and M. Jakobsson.
One experience collecting sensitive mobile data. In
USER Workshop of SOUPS, 2010.

[16] J. Oberheide, E. Cooke, and F. Jahanian. CloudAV:
N-Version Antivirus in the Network Cloud. In
Proceedings of the 17th USENIX Security Symposium
(Security), 2008.

[17] E. Shi, Y. Niu, M. Jakobsson, and R. Chow. Implicit
authentication through learning user behavior. In
Information Security Conference (ISC), 2010.

[18] Z. Song, J. Molina, S. Lee, H. Lee, S. Kotani, and
R. Masuoka. Trustcube: An infrastructure that builds
trust in client. In Future of Trust in Computing,
Proceedings of the First International Conference,
2009.

