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Abstract

In this paper, we propose BIND (Binding Instructions
aNd Data),1 a fine-grained attestation service for secur-
ing distributed systems. Code attestation has recently re-
ceived considerable attention in trusted computing. How-
ever, current code attestation technology is relatively im-
mature. First, due to the great variability in software ver-
sions and configurations, verification of the hash is difficult.
Second, the time-of-use and time-of-attestation discrepancy
remains to be addressed, since the code may be correct at
the time of the attestation, but it may be compromised by
the time of use. The goal of BIND is to address these is-
sues and make code attestation more usable in securing dis-
tributed systems. BIND offers the following properties: 1)
BIND performs fine-grained attestation. Instead of attest-
ing to the entire memory content, BIND attests only to the
piece of code we are concerned about. This greatly simpli-
fies verification. 2) BIND narrows the gap between time-of-
attestation and time-of-use. BIND measures a piece of code
immediately before it is executed and uses a sand-boxing
mechanism to protect the execution of the attested code. 3)
BIND ties the code attestation with the data that the code
produces, such that we can pinpoint what code has been
run to generate that data. In addition, by incorporating the
verification of input data integrity into the attestation, BIND
offers transitive integrity verification, i.e., through one sig-
nature, we can vouch for the entire chain of processes that
have performed transformations over a piece of data. BIND
offers a general solution toward establishing a trusted envi-
ronment for distributed system designers.

∗This research was supported in part by CyLab at Carnegie Mellon un-
der grant DAAD19-02-1-0389 from the Army Research Office, and grant
CAREER CNS-0347807 from NSF, and by gifts from IBM and Cisco. The
views and conclusions contained here are those of the authors and should
not be interpreted as necessarily representing the official policies or en-
dorsements, either express or implied, of ARO, Carnegie Mellon Univer-
sity, IBM, Cisco, NSF, or the U.S. Government or any of its agencies.

1The term BIND is also used in Domain Name Service (DNS) termi-
nology to stand for the Berkeley Internet Name Daemon. Here we use it in
a different context.

1 Introduction

Securing distributed systems continues to be an impor-
tant research challenge. One hard problem in securing a
distributed system arises from the fact that a remote soft-
ware platform may be compromised and running malicious
code. In particular, a compromised platform may exhibit ar-
bitrarily malicious behavior. Such attacks are referred to as
Byzantine attacks [12] in the literature. The task of remote
code attestation then is to identify what software is running
on a remote platform and to detect a corrupted participant.

The Trusted Computing Group (TCG, formerly known
as TCPA) [40] and the Next Generation Secure Comput-
ing Base (NGSCB, formerly known as Palladium) [30] pro-
pose to use a secure coprocessor (Trusted Platform Mod-
ule) to bootstrap trust during system initialization. These
approaches compute a hash value of a loaded program be-
fore execution starts, the hash value can later be used by a
remote party to identify the system’s loaded code and con-
figuration. Meanwhile, operating system architectures have
been built to incorporate this approach [35, 36].

Previously proposed TCG-style attestation mechanisms
have a coarse granularity, they verify the entire operating
system and loaded applications. However, operating sys-
tems often contain numerous modules that depend on the
installed hardware, as well as different versions of the same
software, or the same version compiled with different com-
piler settings, or patched with different patches. Even tiny
differences in the execution code result in a different hash
value. Thus, such coarse-grained attestation makes remote
verification very difficult. The Terra Virtual Machine Mon-
itor [16] alleviates this problem by decomposing attestable
entities into fixed-sized blocks, and computing a separate
hash over each block. Apart from being coarse-grained,
TCG-style attestation only provides load-time guarantees,
as the attestation in TCG only reflects the memory state
right after the program is loaded. However, it may well be
that the software gets compromised at run time (e.g., buffer
overflows, format string vulnerabilities), which load-time
attestation cannot possibly detect.

In another line of work, researchers have proposed Copi-
lot [32], a run-time memory attestation mechanism. Here,
extra hardware periodically computes a hash of the mem-
ory to detect deviations from the expected contents, which
would indicate malicious code. However, Copilot checks



memory periodically, which may miss a short-lived intru-
sion. Meanwhile, Copilot also verifies memory at a coarse
granularity much the same way as TCG-style attestation.

In this paper, our motivation is two-fold. First, we seek
to answer the question: how can code attestation aid us in
designing a distributed system? Second, we make an effort
at addressing the above mentioned issues regarding current
code attestation technology. We present the following con-
tributions: (1) We propose fine-grained attestation, where
we attest only to the critical piece of code involved in pro-
ducing a certain output, instead of computing the checksum
across the entire software system. We achieve this through
an attestation annotation mechanism. We allow the pro-
grammer to identify and annotate the beginning and the end
of this critical piece of code; and every time this piece of
code is executed, our attestation service will be invoked. (2)
We narrow the gap between time-of-attestation and time-of-
use. We attest to the critical piece of code immediately be-
fore it is executed, and we use a sand-boxing mechanism
to protect the execution of the critical code. So even though
the rest of the software system may be compromised, it can-
not tamper with the execution of the critical code. (3) We
propose to tightly bind code integrity with data integrity. In
BIND (Binding Instructions aNd Data), an integrity proof
for a piece of code is cryptographically attached to the data
it has produced. This allows us to pinpoint what code has
been run to produce a certain piece of data. (4) We design a
construction where we incorporate the integrity proof of the
input data into the integrity statement of the code and out-
put data. This construction enables us to achieve transitive
integrity verification with constant overhead, i.e., we only
need to verify one signature to guarantee the integrity of the
entire chain of processes that transformed the data.

We explain how to build BIND using current TCG and
microprocessor technology. To illustrate how BIND can be
used as a general solution toward establishing trust in real-
world distributed systems, we study a distributed computa-
tion application and the BGP routing protocol as examples.

2 Distributed System Security and Role of
Attestation

In this section, we seek to answer the question: how is
attestation useful in securing real distributed systems? We
begin by establishing a conceptual model for distributed
systems. We then examine the threat model and based on
that, we pinpoint the role of attestation in dealing with these
threats.

2.1 A Conceptual Model for Distributed Systems

We first propose a conceptual model for distributed sys-
tems. We consider a distributed system to be comprised of
processes, data and intermediaries.

Process The process is a producer and consumer of data.
It represents protocol logic, i.e., the computations we per-
form on data. In the context of our discussion, a process

is a piece of software code which is to be attested. Note
that we borrow the term process from the operating system
literature, but use it in a different way.

Data Data represents information exchanged between the
processes. In our model, we distinguish between primitive
and derived data. Primitive data are external inputs to the
distributed system, whereas derived data are the output of
some process, i.e., derived data are generated by applying
protocol logic over some input data. In real-world systems,
primitive data usually exist in the form of human input, con-
figuration files, external timing, etc.

Intermediary The intermediary represents the medium
over which data is communicated from/to a process, includ-
ing where data is stored outside the process. In reality, the
role of the intermediary is acted by the network that for-
wards the data between hosts, the operating system that dis-
patches the data to the process concerned. We also model
the local storage system as an intermediary, including the
hard drive or any part of RAM outside the process.

PA PB PC

Dest = 3.3.3.3, 
TTL = 10

PongPong

Ping 3.3.3.3 -t 10

Pong

Dest = 3.3.3.3, 
TTL = 9

 1.1.1.1  2.2.2.2 3.3.3.3

Local 
Configuration

Local 
Configuration

Local 
Configuration

Figure 1. Simple Ping: The Conceptual Model
for Distributed Protocols

To demonstrate the generality of this model, we consider
a simple ping-pong protocol (ICMP echo request and reply)
as an example (see Figure 1). We first illustrate the proto-
col in descriptive language, then explain how this protocol
fits into our model by identifying the processes, data, and
intermediaries. In this example, three hosts, A, B, and C,
each run a ping-pong process, namely PA, PB , and PC .
In reality, the ICMP protocol is part of the TCP/IP stack.
However, we are interested only in the critical piece of code
that performs transformation on ICMP data packets, not the
entire TCP/IP stack. Here our process is defined to be that
piece of critical code. At host A, the user issues a ping com-
mand with destination=C, and TTL=10. The command is
dispatched to process PA, that sends it onto PB . PB decre-
ments the TTL by 1 and forwards it to PC . PC discovers
that it is the destination, and it replies with an echo mes-
sage. The echo is then passed by PB to PA. Finally the re-
sult is returned to the user. Applying our conceptual model
to the simple ping-pong protocol, the processes are PA, PB ,
and PC which run on hosts A, B, and C, respectively. The
data includes the user command, the ping and pong mes-
sages as well as the local IP address of each host. Among
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them, the human input command and the local IP addresses
are primitive data; the ping and pong messages are the de-
rived data. To reach a process, the data passes through the
network and the operating system on the a host. Therefore,
though they are not explicitly shown in the figure, the net-
work and the OS constitute the intermediaries in the simple
ping-pong protocol.

Our notion of process and data is related but not equiva-
lent to the concepts of code section and data section at the
binary executable level. For the ease of hash verification,
we consider memory content that is immutable upon entry
to the critical code to be part of the process; this includes the
code section2 and possibly parts of the data section. Mem-
ory contents that are mutable upon entry to the process is
treated as data.

2.2 Security Problems in a Distributed System

Our goal is to eliminate software attacks, i.e., we assume
that a process is faulty because it is running some malicious
software code. We do not consider faults introduced by ma-
licious hardware such as a malicious processing unit.

In this context, we consider the Byzantine attacker
model [23] where a corrupted process or intermediary can
exhibit arbitrarily malicious behavior.

Malicious Intermediary and the Data Misuse Attack A
malicious intermediary may arbitrarily alter and inject pro-
tocol data. To prevent such attacks, we can employ crypto-
graphic constructions such as message authentication codes
or digital signatures. Through the use of cryptography, the
intermediary is rendered an outsider to the distributed pro-
tocol, for it does not possess the correct cryptographic keys
to modify or inject authenticated protocol data.

In spite of the cryptography mechanisms, a malicious in-
termediary is capable of the data misuse attack, where it
uses authenticated protocol data in a malicious way. For
instance, a malicious intermediary can perform a data sup-
pression attack by refusing to forward any data. She can
perform a replay attack by replaying data that have been
authenticated but are outdated. The malicious intermedi-
ary can also perform a substitution attack where he has two
pieces of authenticated data DA and DB; yet instead of
feeding the correct piece DA to some process, he feeds DB

instead.

Malicious Process and the Data Falsification Attack In
a highly adversarial environment, an attacker may corrupt
one or more processes in the system. A malicious process
is capable of injecting bogus data into the distributed sys-
tem. We refer to this attack as the data falsification attack.
Traditional cryptography does not defend against data fal-
sification attacks by a malicious process, for the malicious
process has the correct cryptographic keys to disguise itself
as a legitimate participant. For instance, in our simple ping-
pong protocol, a corrupted process can arbitrarily modify

2This assumes that no variable data exists in the code section.

the TTL field in a ping message. Thus, if the simple ping-
pong protocol is intended for estimating network distances,
then the estimate will fail due to a TTL modification attack.

2.3 Attestation Design Considerations

Fine-grained v.s. Coarse-grained Attestation We pro-
pose the concept of granularity in attestation. At one end
of the spectrum, we can do coarse-grained attestation over
entire software platforms; on the other hand, we can do
fine-grained attestation by attesting to just a critical piece
of code, which becomes the notion of a process in our con-
ceptual model. The reason why we make an explicit distinc-
tion between the process and the intermediary is to enable
the notion of granularity in attestation; whereas in reality,
both the process and the intermediary can exist in the form
of software code on some computing device. In our con-
ceptual model, the boundary between the process and the
intermediary represents the boundary between what code is
being attested to and what is not.

The following arguments speak in favor of fine-grained
attestation: 1) As we describe in Section 1, fine-grained at-
testation simplifies hash verification. With fine-grained at-
testation, we can also perform software upgrades more eas-
ily, since the expected hash for each process can be updated
independently. 2) Fine-grained attestation allows the dis-
tributed system architect to focus on the security of a criti-
cal module by singling it out from a potentially complicated
system.

On the other hand, with fine-grained attestation, software
code omitted from the attestation is called an intermediary
in our conceptual model. Fine-grained attestation does not
address intermediary attacks. In Section 2.4, we examine
potential mechanisms that can be used to deal with interme-
diary attacks in this framework.

Desired Properties Regardless of the granularity of at-
testation, the following is a list of properties we would ul-
timately like to achieve, not saying that BIND achieves all
of them. 1) Ideally our attestation service should be free
of all software attacks; 2) Apart from making sure that the
process is correct at load-time, we would like to achieve in-
stantaneous detection of run-time compromises as well; 3)
The attestation service needs to be efficient.

The BIND Endeavor BIND offers a fine-grained attes-
tation service. Though BIND does not strictly guarantee
some of the above-mentioned properties, our goal is to see
how far we can push our limits under the constraints of
currently available microprocessor and trusted computing
technology. In Section 3, we detail the properties BIND
achieves.

2.4 Using Fine-grained Attestation to Secure Dis-
tributed Systems

Before getting into the details of BIND, we address the
following question: suppose we were able to build a per-
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fect attestation service satisfying all of the desired proper-
ties mentioned above, how would it aid us in designing se-
cure distributed systems?

First, if such an attestation service can be built, a cor-
rupted process immediately gets detected, and legitimate
processes can thereupon eliminate it from the distributed
system by refusing to accept any data they produce. Thus
the system architect no longer has to deal with Byzantine
faults on the part on the part of processes. Instead he only
needs to consider a simple fail-stop failure mode. By con-
trast, to deal with data falsification attacks by malicious pro-
cesses, traditional Byzantine fault tolerant algorithms create
replicas of each process, and use variants of majority voting
algorithms to eliminate corrupted data. However, creating
replicas is expensive and hence often impractical. Mean-
while, though researchers have endeavored to improve the
performance of majority voting algorithms, they still in-
volve high communication overhead.

On the other hand, a fine-grained attestation service does
not deal with data misuse attacks from malicious intermedi-
aries. In fact, similar to malicious delay and replay attacks,
probabilistic delays, duplicates, and out-of-order message
transmissions may just be inherent properties of the under-
lying network. The system architect should embed logic
in the process itself to deal with such attacks. Many ap-
proaches have been proposed to deal with data misuse at-
tacks by malicious intermediaries. For instance, we often
use timestamps and sequence numbers to provide resilience
to message delay and replay attacks. To counter the substi-
tution attack (See Section 2.2 for the definition of the sub-
stitution attack), a process can tag each piece of data with a
specification on how it is to be used, before having it signed
by the attestation service. Now even if the malicious inter-
mediary can cheat and substitute the input, the process can
easily detect it by examining the specification.

In conclusion, we examined the desired properties we
would ultimately like to achieve out of attestation. We ar-
gue that if we were able to build a perfect attestation ser-
vice with the desired properties, we would be able to deal
with malicious processes in a distributed system by reduc-
ing Byzantine faults to fail-stop failures. On the other hand,
as with all fine-grained attestation, it is up to the protocol
semantics to rule out intermediary attacks.

3 BIND Overview

In this section, we give a design overview of BIND. We
begin by defining what it means for a process and data to
be genuine under the conceptual model defined in the pre-
vious section. Then we describe the techniques BIND uses
to ensure process and data integrity. We also explain the
interface BIND exposes to the programmer, and state the
properties BIND guarantees.

3.1 Process and Data Integrity

Defining Process and Data Integrity Under the concep-
tual model proposed in Section 2, we define the notion of

integrity for process and data. Since BIND does not address
malicious intermediary attacks, we are not considering such
attacks in the following definition.

The integrity of a process is a relatively simple notion.
Since a process is essentially a piece of code, the integrity
of a process is defined by the genuineness of the code.

Integrity of data (or that the data is genuine) can be in-
ductively defined as:

1. Either the data is primitive and is genuine;

2. Or the data is derived by running a genuine process
over genuine data inputs.

Ensuring the Integrity of Primitive Data In practice,
the meaning of primitive data integrity is application spe-
cific. Therefore, BIND cannot enforce primitive data in-
tegrity by itself. Instead we need a mechanism external
to BIND to ensure primitive data integrity. Potential tech-
niques include:
Semantic Check: We can embed logic in the process itself
to perform semantic checks on primitive data, e.g., a dis-
tributed scientific computing application checks whether an
input matrix is well-formed.
Certificates: We may have a central trusted authority to sign
certificates for primitive data, e.g., in a secure version of
Domain Name Service (DNS), hostname to IP address map-
pings are secured through digital signatures from a trusted
DNS authority.
Trusted Path: For user input data, we may use trusted path
mechanisms to ensure that the data came from an authenti-
cated user.

Ensuring the Integrity of Process and Derived Data
BIND offers a mechanism to ensure the integrity of pro-
cess and derived data. BIND produces an authenticator for
every piece of data a process generates. The authenticator
states the fact that the data is generated by running a le-
gitimate process on genuine data inputs. We assume that
the authenticator is attached to the data throughout its life-
time, i.e., when data is sent over the network, or stored and
fetched from local untrusted storage, etc.

3.2 BIND Interface

We assume the process, i.e., the critical code, is stored
in contiguous memory regions. Figure 2 depicts the in-
terface BIND offers to the programmer. At the begin-
ning of the process is an ATTESTATION INIT call to initi-
ate an attestation phase. The parameters passed along with
ATTESTATION INIT include the memory addresses of the
process’s input data and the size of the process code. On
receiving the ATTESTATION INIT request, BIND first veri-
fies the authenticator on the input data. If there are multiple
instances of input data, BIND verifies each one of them.
BIND then hashes the process code along with the input
data addresses. To make sure that what is hashed is what
is executed, BIND sets up an isolated environment for the
process to execute. If the above steps are successful, BIND

4



1. interface ATTESTATION INIT

in input data memory addresses,

in size of process code,

out success indicator;
2. interface ATTESTATION COMPLETE

in output data memory addresses,

out authenticator.

Figure 2. Interface of the attestation service
to the process

yields control to the process with a success indicator, and
from the this point on until an ATTESTATION COMPLETE

command is issued, the process is ensured to execute in
a protected environment safe from tampering. At the end
of the process is an ATTESTATION COMPLETE command
with output data addresses as parameters. In response to
the ATTESTATION COMPLETE command, BIND computes
an authentication tag over both the output data and a hash of
the process code. This authentication tag binds the output
data with the code that has generated it. Then BIND undoes
the protections it has set up for the process and returns the
authenticator to the process.

3.3 BIND Properties

We now discuss the salient ideas underlying BIND:

Fine-grained Attestation When designing a distributed
protocol, we are often concerned about the trustworthiness
of a remote participant. In particular, we care about the pro-
cess, the critical piece of code that performs transformations
over protocol data.

As Figure 2 shows, BIND allows a programmer to
identify the process and annotate the beginning and end
of the process with an ATTESTATION INIT and ATTESTA-
TION COMPLETE call. In this way, every time the process
executes, BIND will be invoked to attest to its integrity.
Through this attestation annotation mechanism, BIND of-
fers fine-grained attestation by attesting only to the process
but not any uncritical code. This simplifies hash verifica-
tion.

Binding Process and Data Integrity From the definition
of data integrity, it is evident that the integrity of derived
data builds on the integrity of its generating process, since a
corrupted process may have performed arbitrary operations
on the data it produces. On the other hand, it is not mean-
ingful to speak of the integrity of a process unless we actu-
ally use the process. A process contributes to the system by
operating on input data and thus generating new data. Ul-
timately, our concern over the integrity of a process stems
from the concern whether a piece of data has been generated

by a genuine process. Therefore, in a distributed system, the
integrity of processes and that of data are inseparable from
each other, and it means little to speak of either alone.

BIND embeds the integrity proof of a process in the
integrity proof of the data it has generated. This binding
also arises from our endeavor to narrow the time-of-use and
time-of-attestation discrepancy which current code attesta-
tion technology has not resolved. We seek to prove what
process code has been run to generate a piece of data, in-
stead of what the process code is at an arbitrary point of
time throughout the life span of the system.

BIND hashes the process code immediately before it is
going to be executed. Then it sets up protection mecha-
nisms so that the process will be executed in a sandbox safe
from tampering. After the process has completed execution,
BIND signs the hash of the code along with the output data
the process has produced. In this way, BIND proves what
code has been executed to generate the data.

Transitive Integrity Verification The inductive defini-
tion of data integrity naturally reflects the existence of a
chain-of-trust. To ensure the integrity of some derived data,
we need to ensure the integrity of its generating process as
well as the integrity of the input data to the process; and
to ensure the integrity of the input data, it is necessary to
ensure the integrity of the previous hop process (i.e., the
process that generated the input data), as well as the input
to the previous hop process, etc.

BIND achieves transitive integrity verification with O(1)
overhead. A BIND authenticator not only vouches for the
most recent process that has operated on the data, but the
entire chain of prior processes as well. To achieve this,
BIND always verifies the authenticator on the input data
when attesting to the process and its output data. A simi-
lar inductive construction is used by Arbaugh et al. [8, 9]
to achieve a secure bootstrap mechanism. While they ver-
ify the integrity of the next layer software before loading it,
BIND verifies the integrity of previous hop process/data be-
fore using it; and we assume an external mechanism exists
to verify primitive data integrity too.

Efficient BIND utilizes TPM’s hardware-based cryptog-
raphy engine to enable fast cryptography computations
needed for attestation. Meanwhile, because BIND supports
transitive integrity verification, it is efficient to verify the in-
tegrity of a piece of data, even when the data has traversed
multiple processes.

Discussion BIND does not deal with software vulnerabil-
ities in the attested code itself. To exploit a software vulner-
ability in the process code, a malicious attacker can supply
the process with malicious input data, so that the process
may be compromised during its own execution. At first, it
may seem that if we hash the process both before and after
its execution, we can eliminate attacks that exploit bugs in-
side the process. In fact, this does not provide a fundamen-
tal solution to the problem, for a sophisticated attacker can
escape detection by restoring the correct code right before
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reaching ATTESTATION COMPLETE. Though BIND fails to
detect a software vulnerability inside the process, the adver-
sary has a restricted attack interface. First, since the process
code is small in size, it is easier to manage and verify; hence
it arguably has few vulnerabilities. It may even be possible
to perform security evaluation on such a small piece of code
to prove that it is free of vulnerabilities. Moreover, to ex-
ploit a vulnerability in the process code, the attacker has to
feed it with carefully-constructed malicious inputs. How-
ever, BIND verifies the integrity of any derived data input
to a process, which drastically reduces the vulnerability sur-
face.

The microprocessor and TCG technology we use for
BIND offers a hybrid hardware and software solution to-
ward overcoming software-based attacks. BIND runs in the
core privilege ring of a modern TCG-aware processor. An
adversary may attempt to break BIND through exploiting a
vulnerability in the BIND code. However, such an attacker
has a restricted attack interface. First, BIND relies heavily
on protection mechanisms provided by the hardware micro-
architecture. Second, the BIND code is small in size and
complexity such that a security evaluation may be possible
to prove that it is free of bugs. Third, BIND offers a minimal
interface to the operating system and applications.

Denial-of-Service (DoS) attackers may be able to com-
promise the availability of BIND by repeatedly sending at-
testation requests to BIND. However, such DoS attacks can
only hurt the adversary, for unless BIND is available, data
produced by that host will not be accepted by legitimate
processes in the system. The compromised host not only
fails to participate in the system, but also is going to be de-
tected. Therefore we do not consider DoS attacks in the
design of BIND.

4 Detailed Design of BIND

This section explores how to instantiate the trusted en-
tity and the attestation service. First we discuss the various
implications of placing trust on different software/hardware
components; next we present a design based on state-of-the-
art processor isolation technology with TCG/TPM support.

4.1 Trust Assumptions

Placement of Trust and Implications We consider how
to instantiate a trusted entity on a host. Our options in-
clude: trusting the operating system, trusting the hardware,
or trusting the Secure Kernel (SK). This section discusses
the security implications of each solution.
Operating System: One option is to integrate the attestation
service into the operating system or run it as an application.
Here we must assume that we trust the protection and fault
isolation mechanisms offered by the OS. This is a relatively
weak security practice, since numerous kernel vulnerabili-
ties exist, and once an attacker has successfully exploited
a buffer overflow [13] or a format string [4] vulnerability,
it can inject arbitrary code to be run at the kernel privi-
lege level. Even though researchers have developed sophis-

ticated software verification techniques, e.g., static analy-
sis [15], to detect software vulnerabilities, these techniques
are not perfect and may miss unknown vulnerabilities.
Hardware: Since our goal is to overcome software-based
attacks, we would like to push the trust onto hardware. The
general belief is that compromising hardware is much more
difficult than compromising software for the following rea-
sons. First, subverting a piece of hardware usually requires
physical vicinity to the targeted hardware; second, tamper
resistant hardware technology continues to mature. The
drawbacks of using trusted hardware include its relatively
high cost for design, manufacture, and deployment, and in-
flexibility when it comes to customization or upgrading.
Secure Kernel: The Secure Kernel (SK) is a new mode on
modern processors such as AMD’s Secure Execution Mode
(SEM) [5]. In Section 6, we provide more information on
SEM-like technology. The SK can be viewed as a middle
ground between pure software and pure hardware solutions.
First the SK is by nature a piece of software code, and suf-
fers the same software vulnerability problem as the OS ker-
nel. Yet, since the SK is usually a compact piece of code,
and offers a minimal interface to the OS, it is far more man-
ageable than the OS kernel, and it may even be practical
to run software verification on the SK code. One of the
greatest challenges of software verification is complexity.
With a small piece of code such as the SK, it may be pos-
sible to enumerate all possible states and verify their cor-
rectness. The SK runs at the core of the privilege rings. It
can utilize several new hardware protection features to pro-
tect itself and other sensitive system resources, including
memory, IO, DMA and system registers. SEM also pro-
vides a secure kernel intercept mechanism to serve as the
single interface between the OS and SK. With the reasons
stated above, it is reasonable to assume the security of the
SK code, and that it remains intact and trustworthy through-
out its lifetime. In Section 6, we also review other micro-
processor technologies that can be used in place of SEM.

BIND Trust Assumptions In designing BIND, we as-
sume that every participating platform is equipped with a
TPM chip and a modern secure processor similar to AMD’s
SEM chip. Trust thus builds on the TPM as well as the
Secure Kernel. In Section 4.1, we discuss the security im-
plications of trusting the SK. Meanwhile, since the TPM
is by nature a passive chip in the TCG context, the SK
serves to bridge the gap between the TPM and the untrusted
OS/application code.

We rely on secure boot and load-time attestation [36] to
establish trust on the integrity of the SK.3 One responsibil-
ity of secure boot is to set up appropriate hardware protec-
tion mechanisms on the processor. Here we need to enforce
write protection on the SK memory space, so that it cannot
be altered by OS/application code nor through DMA; we
also need to establish a secure channel between the SK and
the TPM. To this end, we can allocate an exclusive TPM

3For the purpose of this paper we assume a static root of trust. Trust in
the SK can also be established through the dynamic root of trust mecha-
nism [40].
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locality for the SK and protect the corresponding memory-
mapped I/O space from OS access. Through load-time at-
testation, we can prove the integrity of the SK and hard-
ware protection environment at boot time. And henceforth
we shall rely on the security of the SK and the protection
environment during run-time.

One design consideration for the SK is the trade-off be-
tween its simplicity and functionality. At one end of the
spectrum, we can build an SK as sophisticated as a Virtual
Machine Monitor (VMM) [10, 16] that has partial control
over OS resources such as page-tables and descriptor tables,
and build the attestation service inside the VMM. Yet as the
SK code grows in complexity and size, its manageability
and verifiability diminish, and hence it becomes prone to
software vulnerability exploits. By contrast, one may seek
to minimize functionality at the SK to trade for security and
this is what we do in our design that follows.

4.2 BIND Design

Attestation Overview Figure 3 depicts the sequence of
operations that happen during one attestation phase.

After the process code is invoked, the first operation is to
call the BIND by raising a Secure Kernel Intercept (SKI).
Upon receiving an attestation request, the Secure Kernel
first verifies the authenticator on the input data to the pro-
cess. The address range as to where this data is stored is
provided by the requester, and to ensure that the requester
does not lie about the input data, these memory addresses
will be incorporated into the measurement. The signature
on the input data is validated through the public signing key
of the TPM that signed the input data. The SK also needs to
verify the hash value. Later in this section, we discuss how
to enable different software versions and upgrades. If either
the signature or the hash verification fails, the SK returns
to the process with a failure indicator. Else the SK hashes
the process code as well as the input data addresses, and be-
fore yielding control to the process, the SK sets up certain
protections to ensure that the process code is executed in a
safe and untampered environment. We shall what specific
protections we need later in this section.

After control is handed back to the process code, the
process performs computation on the incoming data, and
at the very end, requests the output data to be signed by
the SK along with a hash of the code itself. On receiving
the the ATTESTATION COMPLETE request, the SK first en-
sures that the ATTESTATION COMPLETE call comes from
a process being attested, i.e., one that performed ATTES-
TATION INIT. This is to prevent a malicious OS kernel
from issuing a ATTESTATION COMPLETE call outside any
attested process in an attempt to thwart the attestation. After
computing a signature over the output data and the measure-
ment result (if there are many instances of output data, the
SK should compute a signature for each instance), the SK
disables the protection mechanisms established for the at-
tested process and yields control.Here we do not explicitly
measure the output data addresses as we do for the input
data, since the process code being measured contains the

ATTESTATION COMPLETE call as well as references to the
output data.

In Figure 3, the SK utilizes the TPM’s hashing and dig-
ital signature functionalities. The TPM provides protected
registers called Platform Configuration Registers (PCR) for
storing integrity measurements. The PCR Reset function
clears the PCR, and the PCR Extend(n) function takes a
160bit number n, and updates a PCR value through PCR←
SHA1(PCR||n). After sending the input data addresses and
the process code to be hashed by the TPM, the SK calls
PCR Read to retrieve the measurement result. The mea-
surement result is stored in the SK’s memory space until
an ATTESTATION COMPLETE call is issued. Then the SK
sends the output data along with the measurement result to
the TPM to be signed. The signature is computed by the
TPM using a private signing key that has been loaded into
the TPM’s memory prior to the Sign call. A signing pair
(K−1, K) is created inside the TPM, and the private key
K−1 is known only to the TPM and will never be exposed
outside the TPM. A TPM can sign a certificate for its public
signing key using its identity private key K−1

ID . The certifi-
cate also states that the key is bound to the SK’s locality and
cannot be used by the OS kernel. The identity public key is
vouched for by a CA.

BIND should support concurrent attestations of multi-
ple processes. For this purpose, the SK maintains a data
structure that records the information of all processes under
attestation.

Verifying the Hash Two steps are required to verify an
authenticator on a piece of input data: 1) verify the sig-
nature, 2) verify the hash. Since verifying the signature
is straightforward, we now explain how to verify the hash
and how to enable different software versions and software
upgrades. BIND allows the application to register one or
more legal hash values. We assume that for each applica-
tion, there is a trusted authority that signs certificates for le-
gal hash values. When an application registers a hash value,
it has to show a correct certificate. The public key of an
application’s trusted authority is included whenever BIND
is signing an authenticator for this application. Therefore,
BIND supports various software versions and software up-
grades.

Ensuring the Untampered Execution of the Process
Code We argued that one of the unaddressed problems
with current code-attestation technology is the time-of-use
and time-of-attestation discrepancy. Even though the code
attested may be legitimate at the time of attestation, it could
have been compromised by the time of use. In our case, we
also need to ensure that what is executed is exactly the code
that is hashed. We address this problem by having the SK
set up a safe environment for the process to execute. In this
safe environment, the process code is “locked” from outside
interference. The protection mechanisms introduced in this
paragraph are hidden from the programmer’s point of view.

• Memory protection One requirement of a safe execu-
tion environment states that no malicious intermediary
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PROCESS → SK: ATTESTATION INIT(input data addresses, size of process code)

SK: disable interrupt

verify authenticator on input data

SK → TPM: PCR Reset

SK → TPM: PCR Extend(input data addresses, process code)

SK → TPM: h← PCR Read

SK: set up secure execution environment for the process

enable interrupt

SK → PROCESS: yield control

PROCESS: perform transformation on input data

PROCESS → SK: ATTESTATION COMPLETE(output data addresses)

SK: disable interrupt

verify that the call comes from the process being attested

SK → TPM: Sign(output data, h)
TPM → SK: {output data, h}K−1

SK: clear protection

SK: enable interrupt

SK → PROCESS: {output data, h}K−1

Figure 3. Attestation Service Based on TPM and SEM

(including malicious software code, malicious I/O de-
vices) can modify the process memory space during
its execution. This we achieve through memory pro-
tection. With AMD’s new SEM mode, memory can be
protected on a per-page basis from access by OS kernel
and peripheral devices. The attestation service running
at the SK privilege level can utilize these features, and
set up corresponding protection data structures to en-
sure that the process executes in a safe environment.

• Securely restoring execution environment after inter-
rupts If the process code were simple enough to be able
to execute in a single pass without going through the
OS scheduler interrupts, then no code could have in-
tercepted its execution, and no software attack would
be able to change the processor environment during its
execution.

In reality, however, the process code may take a long
time to execute and due to the OS scheduler, it may
be suspended and resumed several times before com-
pletion. While performing these context switches, a
malicious OS can cheat and not restore the correct ex-
ecution environment. For instance, the OS may resume
the code not at the instruction where it has left off,
but at a different instruction address. A malicious OS
can also modify its kernel data structure for the pro-
cess in between two scheduler events, so that when the
process is resumed, the register contents are changed.
As a counter-measure, we propose the following ap-
proach. Before yielding to the process code, the SK
loads a shadow Interrupt Descriptor Table (IDT) and a

shadow interrupt handler that overrides the OS inter-
rupt handling mechanisms. In this way, every time an
interrupt is raised during the execution of the process
code, the SK takes over. The SK then makes a copy of
the run-time environment of the process, it also inserts
in the process code an Secure Kernel Intercept instruc-
tion exactly where execution is going to resume. Then
the SK dispatches the interrupt to the OS. And next
time the process is resumed, it will trap to the SK first
so that the SK can check if all run-time environment
has been faithfully restored by the OS before resuming
the process. The run-time environment to be checked
comprises of 1) register values including general pur-
pose registers, system/control registers, etc. 2) virtual
to physical address mapping for the process.

A Symmetric Key Alternative So far we have used
TPM’s digital signature functionality to sign the measure-
ment results. The drawback of asymmetric key cryptogra-
phy is its high computational overhead. In some situations
where efficiency is crucial, we would like to use symmetric
key cryptography instead. In this paragraph, we propose a
symmetric key alternative. To do this, we need to securely
establish a secret MAC key between two TPMs; we also
consider key management issues; and since the TPM does
not support a MAC function by itself, we explain how to
efficiently instantiate a MAC using the TPM’s SHA-1 func-
tion. Our guidelines for key agreement and management are
as follows:

• Since we assume untrusted intermediaries, the key ex-
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SK A: generate a, ga mod p

SK A → TPM A: Seal(a)
SK A: destroy a

SK A → TPM A: Sign(ga mod p)
TPM A → SK A: {ga mod p}K−1

A

SK A � SK B: {ga mod p}K−1
A

SK B � SK A: {gb mod p}K−1
B

SK A: verify signature of {gb mod p}K−1
B

SK A → TPM A: Unseal

TPM A → SK A: a

SK A: compute SKAB ← gab mod p

SK A → TPM A: Seal(SKAB)
SK A: destroy a, SKAB

Figure 4. Diffie-Hellman Key Exchange between TPM A and TPM B. � denotes that the message
has gone through an untrusted intermediary, whereas→ denotes a secure channel, i.e., the channel
between the SK and a local TPM is secure.

change protocol needs to be resilient to man-in-the-
middle attacks.

• The keys should be sealed in TPM’s memory and
should remain invisible to any untrusted party, includ-
ing the OS kernel, application code, peripheral de-
vices, etc.

• The keys are unsealed to the SK upon time of use. The
SK will use them to 1) verify the MAC on input data;
2) compute a MAC over the output data and the hash
of the process code.

• The secret keys remain in the SK’s memory space for
a controlled period of time. To minimize the chance of
leakage, the SK should destroy the keys immediately
after usage. To prevent the untrusted OS kernel from
reading off the secret key information, the SK should
be executed in a globally uninterrupted manner. And
since we have securely set up the DMA Exclusion Vec-
tors (DEV) during secure boot, we can also prevent pe-
ripheral devices from reading the SK memory space.

For key exchange, we may use Diffie-Hellman [14]. In
Figure 4, two participating hosts A and B try to establish a
secret MAC key between their two TPMs. Here K−1

A is the
private signing key of TPM A. The signing pair (K−1

A , KA)
is created inside the TPM, and the private key K−1

A is
known only to TPM A and will never be exposed outside the
TPM. TPM A can sign a certificate for KA using its identity
private key K−1

ID(A). The identity public key is vouched for
by the CA.

After a secret MAC key is established between TPM A
and TPM B, for SK A to verify the MAC on some data

incoming from B, SK A first requests TPM A to unseal
SKAB, then it verifies the MAC using SKAB , and imme-
diately destroys SKAB from memory.

We now explain how to efficiently and securely im-
plement a MAC function using the TPM. The TPM pro-
vides a SHA-1 functionality. So we can instantiate
an HMAC [11] using SHA1, i.e., MAC(msg, K) =
SHA-1(K⊕opad, SHA-1(K⊕ipad, msg)). The SK has to
facilitate the generation of the HMAC, since the TPM does
not support an HMAC function by itself. Therefore the SK
retrieves the MAC key from TPM to perform the XOR and
concatenation functions; the result will then be handed to
the TPM to be hashed.

BIND should provide both asymmetric and symmetric
key options, so that the process can choose whichever ver-
sion to use based on need. In addition, for the symmetric
key version, we need a small modification to its interface:
1) the ATTESTATION INIT call has to specify where the in-
put data came from; 2) the ATTESTATION COMPLETE call
has to specify the intended recipients, so that BIND can cre-
ate a MAC for each recipient.

5 Case Study

To demonstrate the use of BIND in real-world distributed
systems, we present two case studies: securing distributed
computation applications and securing the BGP routing
protocol.
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5.1 Securing Distributed Computation Applica-
tions with BIND

Introduction to Distributed Computation Applications
Recently, there has been a surge of interest in using large-
scale distributed computation to solve difficult computa-
tional tasks. By utilizing the spare processor cycles of
many personal computers, we can obtain the computa-
tional power of one or more super-computers. For in-
stance, the well-know SETI@Home [3] project uses the
free cycles of Internet-connected computers to analyze ra-
dio telescope data in the Search for Extraterrestrial Intelli-
gence. The GIMPS [2] project is intended for the search of
new Mersenne primes and encryption keys; and the Fold-
ing@Home [1] project uses distributed computing to study
protein folding, misfolding, aggregation, and related dis-
eases.

A distributed computation application is made up of a
supervisor and many participants. The supervisor splits a
job into tasks and assigns a task to each participant. One of
the greatest security concerns for distributed computation
applications is the honesty of participants. In many cases a
participant may be motivated to cheat and inject incorrect
results, either to disrupt the computation or to gain mone-
tary remuneration.

Therefore researchers have endeavored to secure dis-
tributed computation applications against dishonest partic-
ipants. Golle and Mironov [17] present a security based
administrative framework for commercial distributed com-
putations. Their solution relies on redundancy to guar-
antee probabilistic detection of cheating behavior. While
their work is restricted to the class of distributed computing
applications that try to invert a one-way function, Szajda,
Lawson, and Owen [39] extend Golle and Mironov’s work
to optimization and Monte Carlo simulations. Meanwhile,
Monrose et al. propose to generate execution trace on the
participants that can be later used to verify the integrity of
program execution [29].

Securing Distributed Computation Applications with
BIND We model the distributed computing application
as comprised of a supervisor process and many participant
processes. The supervisor process splits the job into tasks.
A participant solves a task and reports the outcome to the
supervisor. Under our conceptual framework, a job is mod-
eled as primitive data; and each task is derived data output
from the supervisor process, and input to a participant pro-
cess. The computation result is derived data output from a
participant process and input to the supervisor process.

Assume now we have the BIND attestation service in
place. Then the supervisor process can ask BIND to sign a
task description before dispatching it to a participant. The
participant can ask the local BIND service to verify the in-
tegrity of the task description; and when the participant pro-
cess computes over the input data, its execution is protected
and vouched for by BIND. The computation result will be
signed by BIND along with an integrity proof of the partici-
pant process that has produced the result. In this way, when

the result is reported to the supervisor, he can easily check
whether the result is trustworthy.

When compared with the literature on securing dis-
tributed computation applications, BIND offers the follow-
ing properties (here we are assuming that the attacker per-
forms software attacks only):

• Deterministic Guarantee: BIND offers deterministic
guarantee on the integrity of the computational result.
In particular, BIND guarantees what code has been run
in generating the result.

• General: While Golle et al. [17] and Szajda et al. [39].
suggest different approaches for securing different
functions, BIND is applicable to all types of distributed
computation applications regardless of what function
we want to compute. Meanwhile, existing works con-
sider a centralized distributed computation model with
one supervisor that distributes tasks to participants. If,
however, we are to change to a distributed coordina-
tion model where participants coordinate themselves,
BIND can still be readily applied.

• Efficient: With BIND, the integrity proof for the com-
putational result is efficient to generate and verify. In
comparison, the execution trace approach by Monrose
et al. is more expensive, since the trace size is linear
in terms of the number of instructions actually exe-
cuted [29]. For BIND, the entire code is measured only
once regardless of how many times each instruction is
executed, and the verification takes constant overhead.

5.2 Securing BGP with BIND

The Border Gateway routing Protocol (BGP) enables
routing between administrative domains, and is thus one of
the most important protocols in the current Internet [33].

In this section, we give a brief overview of BGP and its
security requirements, then we show how we can apply the
transitive trust model in this paper to design a highly effi-
cient and secure BGP protocol.

BGP Primer An Autonomous System (AS) is a collec-
tion of routers under one administrative domain, for sim-
plicity assume that an AS corresponds to an Internet Ser-
vice Provider (ISP). In practice, an ISP may have multiple
ASes. An AS is identified through an AS Number (ASN).
The current Internet has about 19,000 ASes.

A prefix is a destination that the routing protocol needs
to establish a route to. A prefix is characterized by an IP
address and the number of bits that are fixed in it, for ex-
ample, the prefix 209.166.161/24 denotes one of Aka-
mai’s class C networks; /24 means that the first 24 bits of
this address are significant, all combinations of the remain-
ing 8 bits belong to that network.

BGP stands for Border Gateway Protocol; it is a path
vector routing protocol, establishing a path to each exist-
ing prefix. In BGP, neighboring ASes exchange prefix in-
formation through BGP Update messages. In a simplified

10



ASPATH 
Generation 

Code
Router A

1

Network

Router B

O
pe

ratin
g 

S
ystem

3

BIND

2

5

4

6

Router C

1,2,3: ))(,,,()},(,,,{ AKA PHBAASPATHMACPHBAASPATH
AB

))(,,,,()},(,,,,{ BKB PHCBAASPATHMACPHCBAASPATH
BC

4,5,6:

Figure 5. Securing BGP using BIND, the numbers on the arrows represent the temporal order of the
messages.

description, a BGP Update message consists of a prefix
along with an ASPATH, i.e., a list of ASes that need to
be traversed to reach that prefix. For example, our sim-
plified update may look as follows: 209.166.161/24,
<701, 3356>, which means that AS 3356 owns the
prefix, and AS 701 will forward its traffic destined for
209.166.161/24 to AS 3356. If an AS uses that route,
it sends a BGP Update to all of its neighboring ASes,
prepending its ASN to the ASPATH. In our example, if
AS 209 want to use this path, it send the following BGP
Update to its neighbors: 209.166.161/24, <209,
701, 3356>. More comprehensive descriptions of BGP
are available [38, 44].

BGP Security Requirements and Approaches The cur-
rent version of BGP was designed for a benign environment,
where ASes could trust each other. Unfortunately, BGP is
so brittle that even misconfigurations can cause network-
wide connectivity outages [25, 28]. BGP security vulnera-
bilities are thoroughly studied, for example in the Routing
Protocol Security IETF working group [34], or by research
groups [21, 31].

The two main classes of attack against BGP are: unau-
thorized prefix announcements (prefix theft), and ASPATH
falsifications in BGP update messages. Both attacks are in
the category of attracting traffic to a point in the network
that would otherwise not receive the traffic. This allows an
attacker to control packets that it would otherwise have no
control over. These attacks are sometimes referred to as
blackhole attacks, since they attract traffic to a point in the
network.

For example, an attacker may want to control packets
destined for the Google search engine. Using unautho-
rized prefix announcement, the attacker (who we assume
owns an AS) injects BGP update messages claiming own-
ership of the Google prefix. Its neighboring ASes will then
start forwarding traffic destined to Google towards the at-

tacker. Several researchers have designed mechanisms to
defend against this attack. For example, Kent et al. pro-
posed S-BGP, where they attach an address attestation to
a BGP update, which is a statement signed with the pre-
fix’s private key, allowing the first AS to announce that pre-
fix [21, 22]. Other researchers use a similar approach, re-
quiring the prefix owner to obtain a certificate proving own-
ership [7, 18, 20, 43].

The second major class of BGP attacks is ASPATH fal-
sification, where an attacker not only adds its ASN to the
ASPATH, but also removes or alters earlier ASNs on the
path. Since the number of ASes on the path are used for
routing decisions, removing ASes from the path results in a
shorter router, which makes the path through the attacker
more attractive (thus also attracts traffic to the attacker).
To prevent unauthorized ASPATH modifications, S-BGP
utilizes route attestations, which are essentially delegation
messages where one AS delegates the right to announce
a prefix to its neighboring AS. An S-BGP update is valid
if it the ASPATH matches the address attestation and the
chain of route attestations, and if all the signatures of the
attestations are valid [21, 22]. As an alternative mecha-
nism, researchers proposed symmetric cryptographic prim-
itives to prevent unauthorized ASPATH modifications, e.g.,
SPV [20].

Securing BGP using BIND The two main mechanisms
we need to secure BGP is to verify the correctness of the
origin of the prefix (to prevent prefix theft), and to prevent
a malicious AS from altering the ASPATH in any other way
than appending its own ASN to the path.4

Applying our conceptual model to the BGP case, we can
categorize the prefix as primitive data. Therefore the in-
tegrity of a prefix has to be ensured external to our attesta-

4In SPV, to achieve the delegation property, they slightly modify the
protocol such that each router signs in the ASN of the next hop. We adopt
this approach here for the same purpose.
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tion service. We may adopt the known certificate approach,
where a prefix owner obtains a prefix certificate from a
trusted authority.

Now we direct our attention toward the attestation of the
derived ASPATHs. For this purpose we shall apply BIND.
We assume the presence of a trusted attestation service on
every router. Here the process to be attested is the ASPATH
generation code, and the untrusted intermediaries include
the router’s operating system, the network and the router’s
local storage.

Figure 5 shows what happens in Router B when it re-
ceives a BGP update from Router A, performs transforma-
tions on the ASPATH attribute, and forwards the resulting
update to Router C. Here we assume symmetric key cryp-
tography is used.

First, Router B receives a route update
{ASPATH, A,B, H(PA)}, MACKAB (ASPATH, A,B, H(PA))

from Router A, here H(PA) denotes the hash of ASPATH
generation process on Router A. The ASPATH along
with the hash value is cryptographically protected by a
message authentication code using key KAB , the secret key
shared between the trusted attestation services on Router
A and B. Now Router B’s ASPATH generation process
issues a ATTESTATION INIT request; the request includes
the memory addresses as to where the incoming update
is stored. In reply to the request, the trusted entity on
Router B first verifies the MAC on the incoming routing
update. Then it hashes the process code along with the
memory addresses of the input data. Finally it sets up a
secure execution environment and resumes the execution
of the ASPATH generation process. Now the Router B’s
ASPATH generation process appends the ASN5 of the next
hop router to the ASPATH.6 This explicitly delegates the
right to propagate the ASPATH to Router C. At the end of
the process is a ATTESTATION COMPLETE request whose
parameters include the memory addresses of the resulting
ASPATH, and the next-hop router where this update is
intended. The trusted attestation service then computes a
message authentication tag over the output data and the
hash, i.e., MACKBC (ASPATH, A, B, C, H(PB)). Finally
after clearing the protection mechanisms, it resumes the
execution of the process where it has left off.

When compared with existing approaches, here are the
desirable properties BIND has to offer:

• Simple design To ensure that a router performs cor-
rect operations on an ASPATH, S-BGP and SPV both
require complex cryptographic constructions to use as
authenticators of data. In particular, SPV uses a com-
plicated hash tree to compute a one-time signature for
each suffix of an ASPATH. The cryptographic con-
struction is problem specific, i.e., one needs to come
up with different cryptographic constructions for dif-
ferent protocols; and proving the security of different

5The real-world BGP protocol performs ASN prepending, but for sim-
plicity of explanation, we assume ASNs are appended to the ASPATH.

6The ASN of the next-hop router is a primitive data input to the AS-
PATH generation process. Its integrity has to be enforced using a mecha-
nism external to BIND.

cryptographic constructions requires a lot of expertise.

By contrast, through the use of BIND, we do not have
to reply on these complicated cryptographic construc-
tions, and the task of securing BGP is much simpler.

• Efficient Previous approaches [20, 21, 22] of route at-
testation incur an O(n) signature overhead where n is
the ASPATH length. We note that this problem is ide-
ally suited for our transitive trust approach. By ap-
plying the transitive trust approach to securing BGP,
we can reduce the O(n) signature overhead to O(1).
Since simply by verifying the previous hop process,
we can guarantee that the entire chain of routers have
performed legal transformations on the ASPATH.

By applying BIND, we can achieve at least the same
properties as S-BGP [21, 22] and SPV [20] assuming full
deployment. First, it provides protection against modifica-
tion and truncation of the ASPATH, since with the attesta-
tion service, we can guarantee that a router has performed
the only legal operation to an ASPATH, i.e., appending the
ASN of the next-hop router. Meanwhile we are now also
secure against the ASPATH lengthening attack, which SPV
is unable to prevent. Another important property which S-
BGP and SPV achieve is the delegation property: a mali-
cious router M cannot propagate an ASPATH without the
permission of the last hop router on the ASPATH. Here we
ensure this property partly through protocol semantics: the
ASPATH generation process explicitly appends the next-
hop router to the ASPATH to delegate the right to forward
the ASPATH to the next-hop router. And since the delega-
tion code is inside the process attested, the correctness of
delegation can be verified under the transitive trust proper-
ties of BIND.

However, as we have pointed out, the attestation service
does not prevent data misuse attacks by a malicious inter-
mediary. For the BGP case, a typical data misuse attack
is the data replay attack, where the malicious intermediary
replays a route that has already been withdrawn. As we
have mentioned, under our model, it is up to the protocol
semantics to address such attacks. For instance, to defend
against the replay attack, the ASPATH generation process
can attach a timeout field with each ASPATH before send-
ing them to the attestation service to be MACed. Meanwhile
we should embed the logic for checking the timestamp in
the attested process code. Meanwhile, the BIND approach
does not work well for incremental deployment.

6 Related Work

In this section, we review related work on verifying cor-
rect code execution, Virtual Machine Monitors (VMM), and
the TPM and SEM technology that we extensively used in
this paper. Other related work, including securing BGP and
distributed computation applications have been discussed in
Section 5.

Verifying Code Execution Wasserman and Blum [42] re-
view the line of theoretical work that enables us to check
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the result of a program. While of theoretic interest, their
methodology is restricted to specific functions and thus of
limited use in reality.

Vigna [41] proposes to use cryptographic traces to enable
mobile code to be securely executed on an untrusted host.
Basically this approach requires that the untrusted host store
cryptographic traces for the execution, so that a trusted host
can request the trace and verify it by executing the code
again and comparing the execution with the stored trace.
However, their approach is expensive, since the verifier has
to execute the entire code again, and the size of trace grows
linearly with the size of the code.

Malkhi et al. [26] build Fairplay, a secure two-party com-
putation system. In fact there has been a huge amount of
theoretic work in secure multi-party computation, however,
this line of work is chiefly concerned about ensuring the se-
crecy of input data instead of the integrity of the computed
outcome.

To verify the integrity of the booting process, we can
use secure boot mechanisms [8, 9]. Starting from an initial
trusted state, each layer verifies the digital signature of the
next layer before executing it. This ensures that the soft-
ware stack has not been altered. Their mechanism is also
similar to our transitive integrity verification mechanism.
While they verify the integrity of the next layer software
before loading it, we verify the integrity of previous hop
process/data before using it.

In another line of work, Seshadri et al. use timing prop-
erties to perform SoftWare-based ATTestation (SWATT) for
embedded devices [37]. In SWATT, the embedded device
computes a checksum of its memory whenever it receives
a challenge. SWATT is designed in a way such that a ma-
licious attack that has modified the memory contents of an
embedded device would have to take a longer time to come
up with the correct checksum.

Virtual Machine Monitors In the area of Virtual Ma-
chine Monitors (VMM), Garfinkel et al. build Terra [16],
a virtual machine-based platform for trusted computing.
They partition a tamper-resistant hardware platform into
multiple, isolated Virtual Machines(VM). The VMM and
the trusted hardware can attest the software running on each
VM to a remote verifier. Their approach assumes that the
VMM cannot be compromised at runtime, and they partly
address the efficiency and usability of attestation. In partic-
ular, though they perform coarse-grained attestation, they
propose to split attestable entities into smaller blocks and
compute a hash over each block.

Trustworthy Computing Platform One chief standard
developed by TCG [40] is the Trusted Platform Module
(TPM). The TPM is a coprocessor intended to serve as
the hardware root of trust of a trusted platform. The
TPM provides several functional components, including
fast cryptographic engines, protected storage, key genera-
tion, etc. Several researchers have examined how to use a
TPM to perform load-time attestations of the software sys-
tem [27, 36].

The SEM architecture is part of AMD’s drive toward en-
abling a trustworthy computing environment. SEM was de-
signed with a primary goal to counter software attacks, and
it offers a hybrid hardware and software solution. Built on
top of the x86 architecture, SEM provides a new mode, the
Trusted Execution Mode (TX = 1), where the TX Mode
bit is a new CPU state bit. The Secure Kernel runs in the
TX Mode which offers several hardware protection mech-
anisms including memory, I/O, DMA and system/control
register protection. Meanwhile SEM offers a single entry-
point into the SK called a Secure Kernel Intercept (SKI). It
also supports secure initialization through the SKINIT in-
struction which works together with the TPM to securely
record the measurements of the software thus loaded.

Apart from AMD’s SEM technology, Intel’s Vander-
pool [6] and Lagrande [19] processors provide similar
TCG/TPM and isolation features BIND requires. Mean-
while, AMD’s new generation of processor virtualization
technology Presidio [24] works for BIND too.

7 Conclusion and Future Work

As code attestation technology receives increasing atten-
tion in the research community, we are interested in ad-
dressing the following questions: 1) What are the desired
properties we would ultimately like to achieve out of attes-
tation? 2) Suppose we were able to build a perfect attes-
tation service with all of the desired properties, and make
it available on every platform, how can it aid us in design-
ing secure distributed systems in general? 3) How far are
we from the perfect attestation service and how far can we
push our limits toward this goal using currently available
TCG and microprocessor technology?

We propose BIND, a fine-grained attestation service that
ties the proof of what code has executed to the data the
code has produced. By attesting to the critical code immedi-
ately before it executes, we narrow the gap between time-of-
use and time-of-attestation. BIND is useful for establishing
a trusted environment for distributed systems, and greatly
simplifies the design of secure distributed systems.

For future work, we want to investigate the feasibility
of a hardware based design for BIND. The current version
of BIND runs in the Secure Kernel and assumes that the
Secure Kernel is trustworthy, which is a hybrid hardware
and software solution. However, it will be desirable to place
trust only on hardware and no software components at all.
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